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ABSTRACT 

Smartphone applications’ performance has a vital impact on user 

experience. However, many smartphone applications suffer from 

bugs that cause significant performance degradation, thereby los-

ing their competitive edge. Unfortunately, people have little un-

derstanding of these performance bugs. They also lack effective 

techniques to fight with such bugs. To bridge this gap, we con-

ducted a study of 70 real-world performance bugs collected from 

eight large-scale and popular Android applications. We studied 

the characteristics (e.g., bug types and how they manifested) of 

these bugs and identified their common patterns. These findings 

can support follow-up research on performance bug avoidance, 

testing, debugging and analysis for smartphone applications. To 

demonstrate the usefulness of our findings, we implemented a 

static code analyzer, PerfChecker, to detect our identified perfor-

mance bug patterns. We experimentally evaluated PerfChecker by 

applying it to 29 popular Android applications, which comprise 

1.1 million lines of Java code. PerfChecker successfully detected 

126 matching instances of our performance bug patterns. Among 

them, 68 were quickly confirmed by developers as previously-

unknown issues that affect application performance, and 20 were 

fixed soon afterwards by following our optimization suggestions. 

Categories and Subject Descriptors 

D.2.5 [Software Engineering]: Testing and Debugging 

General Terms 

Experimentation, Measurement, Performance. 

Keywords 

Empirical study, performance bug, testing, static analysis. 

1. INTRODUCTION 
The smartphone application market is expanding rapidly. Until 

July 2013, the one million Android applications in the Google 

Play store received 50 billion downloads [20]. With more emerg-

ing applications of similar functionalities (e.g., various web 

browsers), performance and user experience has gradually become 

a dominant factor that affects user loyalty in application selection. 

However, our inspection of 60,000 Android applications random-

ly sampled from Google Play store using a web crawler [11] re-

vealed an alarming fact: 11,108 of them have suffered or are suf-

fering from performance bugs of varying severity, as judged from 

their release logs or user reviews. These bugs can significantly 

slow down applications or cause them to consume excessive re-

sources (e.g., memory or battery power). The pervasiveness of 

such performance bugs is attributable to two major reasons. First, 

smartphones are resource-constrained as compared to PCs, but 

their applications often have to conduct non-trivial tasks like web 

browsing and graphics rendering. Thus, poorly implemented ap-

plications can easily exhibit unsatisfactory performance. Second, 

many smartphone applications are developed by small teams 

without dedicated quality assurance. These developers lack viable 

techniques to help analyze the performance of their applications 

[23]. As such, it is hard for them to exercise due diligence in as-

suring application performance, especially when they have to 

push applications to market in a short time. 

Existing studies have focused on performance bugs in PC or serv-

er-side applications, and proposed several interesting testing and 

analysis techniques [27][28][35][52]. Yet, smartphone platforms 

are relatively new, and we have limited understanding of their 

applications’ performance bugs. Whether existing techniques are 

applicable to smartphone applications is an open question. There-

fore, in this paper, we aim to bridge this gap by conducting an 

empirical study. This study focuses on performance bugs from 

real-world smartphone applications. We restrict our scope to An-

droid applications due to their popularity and code availability.1 

Our study covered 70 real-world performance bugs collected from 

eight large-scale and popular Android applications (e.g., Firefox) 

across five different categories. The study aims to answer the 

following four research questions: 

 RQ1 (Bug types and impacts): What are common types of 

performance bugs in Android applications? What impacts do 

they have on user experience? 

 RQ2 (Bug manifestation): How do performance bugs mani-

fest themselves? Does their manifestation need special inputs? 

 RQ3 (Debugging and bug-fixing effort): Are performance 

bugs more difficult to debug and fix than non-performance 

bugs? What information or tools can help with this? 

                                                                 

* Corresponding author. 

Research questions (RQ1-4)

1. Bug types and impacts

2. Bug manifestation 

3. Debugging and fixing effort

4. Common bug patterns

Combating performance bugs

• Bug avoidance techniques (RQ2, RQ4)

• Effective testing methodologies (RQ1, RQ2)

• Debugging assistance tools (RQ3)

• Bug detectors (RQ1, RQ4)
 

Figure 1. Potential benefits of our empirical findings 
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 RQ4 (Common bug patterns): Are there common causes of 

performance bugs? Can we distill common bug patterns to fa-

cilitate performance analysis and bug detection? 

We studied related work [27][54] and formulated the above re-

search questions. Through answering them, we aim to better un-
derstand characteristics of performance bugs in smartphone appli-

cations. For example, we found that smartphone applications are 

more susceptible to performance bugs than PC or server-side ap-
plications. Besides, many smartphone performance bugs do not 

need sophisticated data inputs (e.g., a database with hundreds of 
entries) to manifest, but instead their manifestation needs special 

user interactions (e.g., certain user interaction sequences). Some 
of our findings differ largely from those for performance bugs in 

PC or server-side applications [27][54], as we will explain later. 
Besides facilitating bug understanding, our findings can also sup-

port follow-up research on performance bug avoidance, testing, 
debugging and detection for smartphone applications, as illustrat-

ed in Figure 1. For instance, with our identified common bug pat-

terns, one can propose guidelines for avoiding certain perfor-

mance bugs in application development. One can also design and 
implement bug detection tools for identifying performance opti-

mization opportunities in application testing and maintenance. 

To evaluate the usefulness of our empirical findings, we further 

conducted a case study with 29 large-scale and popular Android 

applications. In the study, we implemented and tested a static code 

analyzer PerfChecker, which is built on Soot, a widely-used Java 

program analysis framework [47]. PerfChecker supports the de-

tection of two performance bug patterns identified in our empiri-

cal study. We applied it to analyze the latest version of the 29 

Android applications, which comprise 1.1 million lines of Java 

code. PerfChecker successfully detected 126 matching instances 

of the two bug patterns in 18 of these applications. We reported 

them to the corresponding developers, and 68 instances have been 

confirmed as real issues affecting application performance while 

others are pending. Among the confirmed instances, developers 

have quickly fixed 20 of them by following our bug-fixing sug-

gestions. They also expressed great interest in our PerfChecker. 

To summarize, we make two major contributions in this paper: 

 To the best of our knowledge, we conducted the first empirical 

study of real-world performance bugs in smartphone applica-

tions. Our findings can help understand characteristics of per-

formance bugs in smartphone applications, and provide guid-

ance to related research (e.g., performance testing and analysis). 

 We implemented a static code analyzer, PerfChecker, to detect 

our identified performance bug patterns in Android applica-

tions. PerfChecker successfully identified performance optimi-

zation opportunities in 18 popular Android applications. This 

inspiringly validated the usefulness of our findings. 

The rest of this paper is organized as follows. Section 2 briefs 

Android application basics. Section 3 presents our empirical study 

of real-world performance bugs in Android applications. Section 4 

presents our case study, in which we leverage our empirical find-

ings to find performance optimization opportunities in Android 

applications. Section 5 discusses related work from recent years, 

and finally Section 6 concludes this paper. 

2. BACKGROUND 
Android is an open-source Linux-based operating system. It is 

now one of the most widely adopted smartphone platforms. Many 

equipment and device manufacturers (e.g., Samsung) customize 

their own Android variants by modifying the Android software 

stack (e.g., kernel and libraries). Applications running on the An-

droid platform are mostly written in Java language. For perfor-

mance considerations, developers may write critical parts of their 

applications using native-code languages such as C and C++. 

Application component and lifecycle. Conceptually, an Android 

application consists of four types of components: activity, service, 

broadcast receiver and content provider. For example, an applica-
tion’s graphical user interfaces (GUIs) are defined by activities. 

Each application component is required to follow a prescribed 
lifecycle that defines how this component is created, used, and 

finally destroyed. For example, Figure 2 gives the lifecycle of an 
activity. It starts with a call to onCreate() handler and ends with a 

call to onDestroy() handler. An activity’s foreground lifetime (i.e., 

the “Running” state) starts after calling onResume() handler, and 
lasts until onPause() handler is called, when another activity 

comes to foreground. An activity can interact with its user only 
when it is at foreground. When it goes to background and be-

comes invisible (i.e., the “Stopped” state), its onStop() handler 
would be called. When its user navigates back to a paused or 

stopped activity, the activity’s onResume() or onRestart() handler 
would be called, and the activity would come to foreground again. 

In exceptional cases, a paused or stopped activity may be killed 
for releasing memory to other applications with higher priorities. 

Single thread policy. When an Android application starts, An-

droid OS creates a “main thread” (also known as an “UI thread”) 
to instantiate this application’s components. This thread dispatch-

es system calls to responsible application components, and user 
events to appropriate UI widgets (e.g., buttons). After dispatching, 

the corresponding components’ lifecycle handlers and UI widgets’ 
GUI event handlers will run in the main thread to handle the sys-

tem calls or user events. This is known as the “single thread poli-
cy” [1]. The policy requires developers to control workloads of 

their applications’ main threads (e.g., not overwhelming a main 
thread with intensive work). Otherwise, applications can easily 

exhibit poor responsiveness. 

3. EMPIRICAL STUDY 
In this section, we present our empirical study of real-world per-

formance bugs from Android applications. The study aims to an-

swer our earlier four research questions RQ1–4. In the following, 

we first describe our application subjects and their reported per-

formance bugs, and then discuss our empirical findings. 

We selected open-source Android applications as our subjects for 
studying questions RQ1–4 because the study requires application 

bug reports and corresponding code revisions. 29 candidate appli-

cations that satisfy the following three criteria were randomly 
selected from four popular open-source software hosting plat-

forms, namely, Google Code [18], GitHub [17], SourceForge 
[46], and Mozilla repositories [33]. First, a candidate should have 

achieved more than 10,000 downloads (popularity). Second, it 

Running

Stopped

Launch Activity

Paused

Destroyed

onStop()

1.  onCreate ()

2.  onStart ()

3.  onResume()1.  onRestart ()

2.  onStart ()

3.  onResume() onPause()

onResume()

onDestroy()

<<kill >>
<<kill >>

 

Figure 2. Lifecycle of an activity 
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should own a public bug tracking system (traceability). Third, it 
should have at least hundreds of code revisions (maintainability). 

The three criteria provide a good indicator of popular and mature 
applications. For these 29 candidates, we tried to identify perfor-

mance bugs in their bug tracking systems. Due to different man-
agement practices, some application developers explicitly labeled 

performance bugs using special tags (e.g., “perf”), while others 
did not maintain a clear categorization of reported bugs. To ensure 

that we study real performance bugs, we refined our application 
selection by keeping only those containing clearly labeled perfor-

mance bugs for our study. As a result, eight applications were 

finally selected as our subjects (all 29 applications were still used 
in our later case study for validating the usefulness of our empiri-

cal findings). From them, we obtained a total of 70 performance 
bugs, which were clearly labeled (confirmed) and later fixed. 

Our selection process could miss some performance bugs (e.g., 
those not performance-labeled). Some related studies selected 
performance bugs by searching keywords like “slow” or “latency” 
in bug reports [27][54]. We found that such searches resulted in 
more than 2,800 candidate performance bugs in all 29 applica-
tions. We randomly sampled and manually analyzed 140 of these 
candidate bugs (5%), and found that most of them are inappropri-
ate for our study. This is because more than 70% of these candi-
dates are either not related to performance (i.e., their bug reports 
accidentally contain such keywords) or are actually complex bugs 
that contain both performance and functional issues (e.g., low 
performance as a side effect of wrongly implemented functionali-
ty). To avoid introducing such threats or uncontrollable issues to 
our empirical study, we refrained from keyword search, while 
focusing on the 70 explicitly labeled performance bugs. 

Table 1 lists basic information of our eight selected Android ap-
plications. They are large-scale (up to 122.9K LOC), popularly-
downloaded (up to 100 million downloads), and cover five differ-
ent application categories. In the following we analyze 70 perfor-
mance bugs collected from these applications and report our find-
ings. The whole empirical study took about 180 person-days, 

involving three students (two postgraduate and one final-year 
undergraduate) for data collection, analysis and cross-checking. 

3.1 RQ1: Bug Types and Impacts 
We studied the bug reports and related discussions (e.g., com-
ments and patch reviews) of the 70 performance bugs, and as-
signed them to different categories according to their major con-
sequences. If a bug has multiple major consequences, we assigned 
it to multiple categories (so accumulated percentages can exceed 
100%). We observed three common types of performance bugs in 
Android applications: 

GUI lagging. Most performance bugs (53 / 70 = 75.7%) are GUI 

lagging. They can significantly reduce responsiveness or smooth-

ness of the concerned applications’ GUIs and prevent user events 

from being handled in a timely way. For example, in Firefox 

browser, tab switching could take up to ten seconds in certain 

scenarios (Firefox bug 7194932). This may trigger the infamous 

“Application Not Responding (ANR)” error and cause an applica-

tion to be no longer runnable, because Android OS would force its 

user to close the application in such circumstances. 

Energy leak. The second common type of performance bugs (10 / 
70 = 14.3%) is energy leak. With such bugs, concerned applica-

tions could quickly consume excessive battery power with certain 
tasks, which actually bring almost no benefit to users. For exam-

ple, the energy leak in Zmanim (bug 50) made the application 
render invisible GUI widgets in certain scenarios, and this useless 

computation simply wasted valuable battery power. If an Android 
application contains serious energy leaks, its user’s smartphone 

battery could be drained in just a few hours. For instance, My 

Tracks has received such complaints (bug 520): 

“I just installed My Tracks on my Galaxy Note 2 and it is 
a massive battery drain. My battery lost 10% in standby 
just 20 minutes after a full charge.” 

“This app is destroying my battery. I will have to uninstall 
it if there isn’t a fix soon.” 

Energy leaks in smartphone applications can cause great incon-

venience to users. Users definitely do not want their smartphones 

to power off due to low battery, especially when they need to 

make important phone calls. As shown in the above comments, if 

an application drains battery quickly, users may switch to other 

applications that offer similar functionalities but are more energy-

efficient. Such a “switch” can be common since nowadays users 

have many choices in selecting smartphone applications. 

Memory bloat. The third common type of performance bugs (8 / 
70 = 11.4%) is memory bloat, which can incur unnecessarily high 

memory consumption (e.g., Firefox bug 723077 and Chrome bug 
245782). Such bugs can cause “Out of Memory (OOM)” errors 

and application crashes. Even if a concerned application does not 
crash immediately (i.e., mild memory bloat), its performance can 

become unstable as Dalvik garbage collection would be frequently 
invoked, leading to degraded application performance. 

These three performance bug types have occupied a majority of 

our studied 70 performance bugs (94.7%; some bugs belong to 

more than one type as aforementioned). There are also other types 

of bugs (e.g., those causing high disk consumption or low network 

throughput), but we observed them only once for each type in our 
dataset. Thus, we consider them not common. 

                                                                 
2 All bugs can be retrieved in their applications’ bug tracking systems 

using our provided bug IDs. We omit detailed URLs due to page limit. 

Table 1. Subjects and selected bugs 

Application name Category Size (LOC) Programming language Downloads Availability # selected bugs 

Firefox3 Communication1 122.9K2 Java, C++, C 10M2 ~ 50M Mozilla Repositories 34 

Chrome3 Communication 77.3K  Java, C++, Python 50M ~ 100M Google Code 19 

AnkiDroid Education 44.8K Java 500K ~ 1M Google Code 4 

K-9 Mail Communication 76.2K Java 1M ~ 5M Google Code 3 

My Tracks Health & Fitness 27.1K Java 10M ~ 50M Google Code 3 

c:geo Entertainment 44.7K Java 1M ~ 5M GitHub 3 

Open GPS Tracker Travel & Local 18.1K Java 100K ~ 500K Google Code 2 

Zmanim Books & Reference 5.0K Java 10K ~ 50K Google Code 2 

1: The application category information is obtained from Google Play store [19]; 2: 1K = 1,000 & 1M = 1,000,000 
3: For Firefox and Chrome, we counted only their lines of code specific to Android. 
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3.2 RQ2: Bug Manifestation 
Understanding how performance bugs manifest in Android appli-
cations can provide useful implications on how to effectively test 
performance bugs. Our study reveals some observations, which 
demonstrate unique challenges in such performance testing. 

Small-scale inputs suffice to manifest performance bugs. Exist-
ing studies reported that two thirds of performance bugs in PC 
applications need large-scale inputs to manifest [27]. However, in 
our study, we observed only 11 performance bugs (out of 70) that 
require large-scale inputs to manifest. Here, we consider a data-
base with 100 data entries already large-scale (e.g., Firefox bug 
725914). Other bugs can easily manifest with small-scale inputs. 
For example, Firefox bugs 719493 and 747419 only need one user 
to open several browser tabs to manifest. Manifested bugs would 
significantly slow down Firefox and make its GUI less responsive. 
We give some comments from their bug reports below: 

“I installed the nightly version and found tab switching is 

so slow that it makes using more than one tab very hard.” 

“Firefox should correctly use view holder patterns. Oth-

erwise, it will just have pretty bad scrolling performance 

when you have more than a couple of tabs.” 

These comments suggest that Android applications can be suscep-
tible to performance bugs. If an application has issues affecting its 
performance, users can often have an uncomfortable experience 
when conducting simple daily operations like adding a browser 
tab (Firefox bug 719493). A few such operations can quickly 
cause performance degradation. Due to this reason, cautious de-
velopers should try their best to optimize the performance of their 
code. For example, c:geo developers always try to avoid creating 
short-term objects (c:geo bug 222), because Android documenta-
tion states that less object creation (even an array of Integers) 
means less garbage collection  [2]. 

Special user interactions needed to manifest performance 
bugs. More than one third (25 out of 70) of performance bugs 
require special user interactions to manifest. For example, 
Zmanim’s energy leak needs the following four steps to manifest: 
(1) switching on GPS, (2) configuring Zmanim to use current 
location, (3) starting its main activity, and (4) hitting the “Home” 
button when GPS is acquiring a location. Such bugs are common, 
but can easily escape traditional testing. They can only manifest 
after a certain sequence of user interactions happen to the con-
cerned application, but traditional code-based testing adequacy 
criteria (e.g., statement or branch coverage) do not really consider 
sequences of user interactions. A recent study also shows that 
existing testing techniques often fail to reach certain parts of An-
droid application code [25]. Hence, our findings suggest two chal-
lenges and corresponding research directions in testing perfor-
mance bugs for smartphone applications: 

 Effectively testing performance bugs requires coverage criteria 
that explicitly consider sequences of user interactions in as-
sessing the testing adequacy. Since the validity of user interac-
tion sequences is essentially defined by an application’s GUI 
structure, existing research on GUI testing coverage criteria 
[32] may help in addressing this challenge. 

 Test input generation should construct effective user interac-
tion sequences to systematically explore an application’s state 
space. Since such sequences can be infinite, research effort 

should focus on effective techniques that can identify equiva-
lence among constructed user interaction sequences, avoiding 
redundant sequences and wasted test efforts. 

Automated performance oracle needed. Performance bugs can 
gradually degrade an application’s performance. For example, 
Firefox becomes progressively slower when its database’s size 
grows (bug 785945). Such bugs rarely cause fail-stop conse-
quences like application crashes, thus it is challenging to decide 
whether an application is suffering any performance bug. Yet, our 
study found three common judgment criteria that have been used 
in real world to detect performance bugs in Android applications: 

 Human oracle. More than half of the judgments were made 
manually by developers or users in our investigated Android 
applications. People simply made judgments according to their 
own experiences. 

 Product comparison. Many developers compared different 
products of similar functionalities to judge whether a particu-
lar product contains any performance bugs (e.g., checking 
whether conducting an operation in one product is remarkably 
slower than in other products). We observed ten such cases in 
our study. For example, upon receiving user complaints about 
performance, K9 Mail developers checked whether their ap-
plication’s performance was comparable to other email clients 
and then decided what to do next (K9 Mail bugs 14 and 23). 

 Developers’ consensus. Developers also have some implicit 
consensus for judging performance bugs. For instance, Google 
developers consider an application sluggish (i.e., GUI lagging) 
if a user event cannot be handled within 200ms [53]. Mozilla 
developers assume that Firefox’s graphics-rendering units 
should be able to produce 60 frames per second to make 
smooth animations (Firefox bugs 767980 and 670930). 

Although these judgment criteria have been used in practice, they 
either require non-trivial manual effort (thus not scalable) or are 
not generally defined (thus not widely used). To facilitate perfor-
mance testing and analysis, automated oracles are thus desirable. 
Even if general oracles may not be possible, application or bug 
specific oracles can still be helpful. Encouragingly, there have 
been initial attempts toward this end [41][55]. Besides, our previ-
ous work [30] also proposed a cost-benefit analysis to detect ener-
gy leaks caused by improper or ineffective uses of smartphone 
sensors. Still, more effort on general automated oracles for per-
formance bugs is needed to further advance related research. 

Performance bugs can be platform-dependent. We also ob-
served that a non-negligible proportion (6 out of 70) of perfor-
mance bugs require specific software or hardware platforms to 
manifest. For example, Chrome’s caching scheme would hurt 
performance on ARM-based devices, but not on x86-based devic-
es (Chrome bugs 170344 and 245782). Firefox’s animation works 
more smoothly on Android 4.0 than older systems (Firefox bug 
767980). This suggests that developers should consider device 
variety during performance testing, since Android OS can run on 
different hardware platforms and has so many customized vari-
ants. This feature differs largely from performance bugs in PC 
applications, which are not so platform-dependent [27][54]. 

  

3.3 RQ3: Debugging and Bug-fixing Effort 
To understand the effort required for performance debugging and 
bug-fixing for Android applications, we analyzed 60 of our 70 

GUI lagging, energy leak and memory bloat are three dominant 

performance bug types in our studied Android applications. 

Research effort can first be devoted into designing effective 

techniques to combat them. 

Effective performance testing needs: (1) new coverage criteria 

to assess testing adequacy, (2) effective techniques for generat-

ing user interaction sequences to manifest performance bugs, 

and (3) automated oracles to judge performance degradation. 
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performance bugs. We excluded 10 remaining bugs because we 
failed to recover links between their bug reports and code revi-
sions3. To quantify debugging and bug-fixing effort for each of 
these bugs, we measured three metrics that were also adopted in 
related studies [54]: (1) bug open duration, which is the amount of 
time from a bug report is opened to the concerned bug is fixed; (2) 
number of bug comments, which counts discussions among devel-
opers and users for a bug during its debugging and bug-fixing 
period; (3) patch size, which is the lines of code changed for fix-
ing a bug. Intuitively, if a bug is difficult to debug and fix, its 
report would be open for a long time, developers tend to discuss it 
more, and its patch could cover more lines of code changes. 

Table 2 reports our measurement results. We observe that on av-
erage, it takes developers about two months to debug and fix a 
performance bug in an Android application. During this period, 
they can have tens of rounds of discussions, resulting in many bug 
comments (up to 71). Besides, on average, bug-fixing patches can 
cover more than 182 lines of code changes, indicating non-trivial 
bug-fixing effort. For comparison, we also randomly selected 200 
non-performance bugs (bugs without performance labels) from 
the bug database of Firefox and Chrome (we selected 100 bugs for 

each). We did not select non-performance bugs from other appli-
cation subjects for comparison, because each of these subjects 
contains only a few performance bugs (about two to four). Such 
small sample sizes may lead to unreliable comparison results, 
leaving a weak foundation for further research on related topics 
[12]. On the other hand, the vast majority of our studied perfor-
mance bugs come from Firefox and Chrome, and therefore we 
selected non-performance bugs from these two subjects for com-
parison. The severity levels of our selected 200 non-performance 
bugs are comparable to those of performance bugs in Firefox and 

                                                                 
3 Our manual analysis of commit logs around bug-fixing dates also failed 

to find corresponding code revisions. 

Chrome. Figure 3 compares these two kinds of bugs by boxplots. 
The results consistently show that performance debugging and 
bug-fixing require more effort than their non-performance coun-

terparts. For example, in Firefox, the median bug open duration is 
42 workdays for performance bugs, but only 13 workdays for 
non-performance bugs. To understand the significance of the dif-
ferences between these two kinds of bugs, we conducted a Mann-
Whitney U-test [31] with the following three null hypotheses: 

 Performance debugging and bug-fixing do not take a signifi-

cantly longer time than their non-performance counterparts. 

 Performance debugging and bug-fixing do not need significant-

ly more discussion than their non-performance counterparts. 

 Patches for fixing performance bugs are not significantly larger 

than those for fixing non-performance bugs. 

Table 3 gives our Mann-Whitney U-test results (p-values). The 

results rejected the above three null hypotheses all with a confi-

dence level over 0.95 (i.e., p-values are all less than 0.05). Thus, 

we conclude that debugging and fixing performance bugs indeed 

requires more effort than debugging and fixing non-performance 

bugs. This result can help developers better understand and priori-

tize bugs for fixing in a cost-effective way, as well as estimating 

possible manual effort required for fixing certain bugs. 

We further looked into bug comments and bug-fixing patches to 

understand: (1) why it is difficult to debug and fix performance 

bugs in Android applications, and (2) what support is expected in 

debugging and bug-fixing. We found that quite a few (22 / 70 = 

31.4%) performance bugs involve multiple threads or processes, 

which may have complicated the debugging and bug-fixing tasks. 

In addition, these performance bugs rarely caused fail-stop conse-

quences such as application crashes. Due to this reason, traditional 

debugging information (e.g., stack trace) can offer little help in 

performance debugging. We analyzed all 70 performance bugs, 

and found that only four bugs have had their debugging and fixing 

tasks receiving some help from such traditional information, as 

judged from their bug discussions (e.g., c:geo bug 949 and Firefox 

bug 721216). On the other hand, we found that debugging infor-

mation from two kinds of tools has received more attention: 

Profiling tools. Profiling tools (or profilers) monitor an applica-
tion’s execution, record its runtime information (e.g., execution 
time of a code unit), and trace details of its resource consumption 
(e.g., memory). For example, Firefox and Chrome developers 
often take three steps in performance debugging: (1) reproducing 
a performance bug with the information provided in its bug report 
if any, (2) running the application of concern for a long while to 
generate a profile using their own profilers [9][14], and (3) per-
forming offline profile analysis to identify performance bottle-

Table 2. Performance bug debugging and fixing effort 

Metric Min. Median Max. Mean 

Bug open duration (days) 1 47 378 59.2 

Number of bug comments 1 14 71 16.7 

Patch size (LOC) 2 72 2,104 182.3 

Table 3. p-values of Mann-Whitney U-tests 

Subject 
p-value 

Bug open duration # bug comments Patch size 

Firefox 0.0008 0.0002 0.0206 

Chrome 0.0378 0.0186 0.0119 
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Figure 3. Comparison of debugging and bug-fixing effort (“Perf” = “performance bug”, “NPerf” = “non-performance bug”) 
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necks/bugs if possible. However, profile analysis can be very 
time-consuming and painful, because current tools (e.g., those 
from Android SDK) can record tons of runtime information, but 
which runtime information can actually help performance debug-
ging is still an open question. Firefox developers have designed 

some visualization tools (e.g., Cleopatra [14]) to save manual 
effort in profile analysis, but these tools are not accessible to other 
developers or applicable to other applications. Researchers and 
practitioners are thus encouraged to design new general tech-
niques and tools for analyzing, aggregating, simplifying and visu-
alizing profiling data to facilitate performance debugging. 

Performance measurement tools. Performance measurement 
tools can also ease performance debugging. They can directly 
report performance for a selected code unit in an application. For 
example, Firefox’s frame rate meter [15] measures the number of 
frames a graphics-rendering unit can produce per second (e.g., 
when debugging Firefox bug 670930). This information can help 
developers in two ways. First, it prioritizes the code units that 
need performance optimization. Second, it suggests whether a 
code unit has been adequately optimized. For example, Firefox 
developers could stop further optimizing a graphics-rendering unit 
if the frame rate meter reports a score of 60 frames per second 
(e.g., when fixing Firefox bug 767980). Chrome developers also 
use similar tools (e.g., using smoothness measurement tools for 
debugging Chrome bug 242976). Such tools are useful and wel-
comed by Android developers. We show some comments about 
Firefox’s frame rate meter from the developers’ mailing list: 

“I found it very useful for finding performance issues in 

Firefox UI, and web devs should find it useful too.” 

“This is fantastic stuff. It’s a must-have for people hack-

ing on front end UI. Also for devs tracking animation perf.” 

Besides understanding the challenges of performance debugging, 
we also looked for reasons from bug-fixing patches why fixing 
performance bugs is so difficult. We found that such patches are 
often complex and have to conduct: (1) algorithmic changes (e.g., 
Firefox bug 767980), (2) design pattern reimplementation (e.g., 
Firefox bug 735636), or (3) data structure or caching scheme re-
design (e.g., Chrome bug 245782). Such bug-fixing tasks are usu-
ally complex. This explains why fixing performance bugs took a 
longer time and incurred much larger patch sizes than fixing non-
performance bugs, as illustrated in Figure 3. 

 

3.4 RQ4: Common Bug Patterns 
To learn the root causes of our 70 performance bugs, we studied 

their bug reports, patches, commit logs and patch reviews. We 

managed to figure out root causes for 52 of these bugs. For the 

remaining 18 bugs, we failed due to the lack of informative mate-

rials (e.g., related bug discussions). 

Performance bugs in Android applications can have complex or 

application-specific root causes. For example, Firefox’s “slow tab 

closing” bug was caused by heavy message communications be-

tween its native code and Java code (Firefox bug 719494), while 

AnkiDroid suffered GUI lagging because its database library was 

inefficient (AnkiDroid bug 876). Despite such variety, we still 

identified three common causes for 21 out of the 52 performance 

bugs (40.4%). We explain them with concrete examples below. 

Lengthy operations in main threads. As mentioned earlier, An-

droid applications should not block their main threads with heavy 

tasks [1]. However, when applications become increasingly more 

complex, developers tend to leave lengthy operations in main 

threads. We observed quite a few occurrences of such bugs (11 / 

52 = 21.2%). Figure 4 gives a simplified version of Firefox bug 

721216 and its bug-fixing patch. This bug caused Firefox to suffer 

GUI lagging when its “tab strip” button was clicked. The bug 

occurred because the button’s click event handler transitively 

called a “refreshThumbnails” method, which produced a thumb-

nail for each browser tab by iteratively calling heavy-weight Bit-

map compression APIs (Lines 3–5). Later to fix this bug, devel-

opers moved such heavy operations to a background thread (Lines 

6–12), which can asynchronously update Firefox’s GUI. 

Wasted computation for invisible GUI. When an Android ap-
plication switches to background, it may still keep updating its 
invisible GUI. This brings almost no perceptible benefit to its 
user, and thus the performed computation (e.g., collecting data 
and updating GUI) simply wastes resources (e.g., battery power). 
Such bugs also form a common pattern, which covers 6 of the 52 
performance bugs (6 / 52 = 11.5%). For instance, Figure 5 lists the 
concerned code and corresponding bug-fixing patch for our 
aforementioned energy leak in Zmanim (bug 50). When Zmani-
mActivity launches, it registers a location listener to receive loca-
tion changes for updating its GUI (Lines 5–14). The location lis-
tener is normally unregistered when the activity is destroyed (Line 
27). However, if a user launches Zmanim and then switches it to 
background (Android OS will call onPause() and onStop() han-
dlers accordingly, but not onDestroy()), the application will keep 
receiving location changes to update its GUI, which is, however, 
invisible. The location sensing and GUI refreshing are then use-
less, but still drain battery power. This can be common for many 
smartphone applications, because users often perform multiple 
tasks at the same time (e.g., playing Facebook and Twitter while 
listening to music) and frequently switch between them. To fix 
such bugs, developers have to carefully monitor application states 
and disable unnecessary tasks when an application goes to back-
ground. For example, Firefox developers suggested disabling 
timers, animations, DOM events, audio, video, flash plugins, and 
sensors when Firefox went to background (Firefox bug 736311). 
Similarly, as Figure 5 shows, Zmanim developers disabled loca-
tion sensing by unregistering the location listener in ZmanimAc-
tivity’s onPause() handler (Line 23), and enabled it again in onRe-
sume() handler when necessary (Lines 17–19). 

Frequently invoked heavy-weight callbacks. Four out of the 52 
performance bugs (4 / 52 = 7.7%) concern frequently invoked 
callbacks. These callbacks need to be light-weight since they are 
frequently invoked by Android OS. However, many such 
callbacks in real-world applications are ill-implemented. They are 

public void refreshThumbnails() {

//generate a thumbnail for each browser tab

- Iterator<Tab> iter = tabs.values().iterator();

- while (iter.hasNext())

- GeckoApp.mAppContext.genThumbnailForTab(iter.next());

+    GeckoAppShell.getHandler().post(new Runnable() {

+    public void run() {

+      Iterator<Tab> iter = tabs.values().iterator();

+        while (iter.hasNext())

+        GeckoApp.mAppContext.genThumbnailForTab(iter.next());

+      }

+    });

}

Note: the method genThumbnailForTab() compresses a bitmap to 
produce a thumbnail for a browser tab.
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Figure 4. Firefox bug 721216 (simplified) 

Debugging and fixing performance bugs are generally more 

difficult than debugging and fixing non-performance bugs. In-

formation provided by profilers and performance measurement 

tools are more helpful for debugging than traditional infor-

mation like stack trace. Existing profilers expect improvement 

for automatically analyzing, aggregating, simplifying and visu-

alizing collected runtime profiles. 
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heavy-weight and can significantly slow down concerned applica-
tions. We illustrate with a list view callback example below. 

A list view displays a list of scrollable items and is widely used in 
Android applications. Figure 6 gives one example, where each 
listed item contains two elements (i.e., two inner views of the list 
item): an icon and a text label. When a user scrolls up a list view, 
some existing items will go off the top of the screen while some 
new items will be added to the bottom. To use a list view, devel-

opers need to write an adapter class and define its getView() 
callback (see Figure 7 for example). At runtime, when a new item 
needs to go onto the screen, Android OS will invoke the 
getView() callback to construct and show this item. This callback 
conducts two operations: (1) parsing the new item’s layout XML 
file and constructing a tree of its elements (a.k.a., list item layout 
inflation), and (2) traversing the tree to retrieve specific elements 
for updating (a.k.a., inner view retrieval and update). However, 
XML parsing and tree traversing can be time-consuming when a 
list item’s layout is complex (e.g., containing many elements or 
having hierarchical structures as Android applications typically 
do). Screen scrolling can thus slow down if such operations are 
commonly performed. For performance concerns, Android OS 
recycles each item that goes off the screen while users scroll a list 
view. The recycled items can be reused to construct new items 
that need to appear later. Such “recycle and reuse” can be done as 
list items often have identical layouts. 

We give two versions of getView() implementation in Figure 7. 

The first inefficient version conducts two aforementioned opera-

tions (Lines 2–9) every time the callback is invoked. The second 

version applies a “view holder” design pattern suggested by An-

droid documentation [3]. The basic idea is to reuse previously 

recycled list items. It avoids list item layout inflation when there 

are recycled items for reuse (Lines 24–25). Besides, when a list 

item is constructed for the first time, the references to its inner 

view objects are identified and stored in a special data structure 

(Lines 18–22; data structure defined at Lines 32–36). Later, when 

reusing recycled items, these stored references can be used direct-

ly for updating content (Lines 27–29), avoiding inner view re-

trieval operations. By doing so, the view holder pattern can save 

both computation for list item layout inflation and inner view 

retrieval, and memory for constructing new list items. Frequently 

invoked callbacks should adopt such efficient designs. 

 

3.5 Discussions 
Our findings of performance bugs in smartphone applications 
exhibit some unique features, as compared with those from PC or 
server-side applications. First, smartphone application platforms 
are new and quickly evolving. For example, the current Android 
platform is not fully optimized and developers keep improving its 
performance for better user experience. Smartphone applications 
are thus susceptible to performance bugs due to such platform 
instability. As shown earlier, Android users can easily manifest 

public class ZmanimActivity extends Activity {

private ZmanimLocationManager lm;

private ZmanimLocationManager.Listener locListener;

public void onCreate() {

//get a reference to system location manager

lm = new ZmanimLocationManager(ZmanimActivity.this);

locListener = new ZmanimLocationManager.Listener() {

public void onLocationChanged(ZmanimLocation newLoc) {

//build UI using obtained location in a new thread

rebuildUI(newLoc);

}

};

//register location listener

lm.requestLocationUpdates(GPS, 0, 0, locListener);

}

public void onResume() {

+     //register location listener if UI still needs update

+     if(buildingUINotFinished)

+       lm.requestLocationUpdates(GPS, 0, 0, locListener);

}

public void onPause() {

+     //unregister location listener

+     lm.removeListener(locListener);

}

public void onDestory() {

- //unregister location listener

- lm.removeListener(locListener);

}

}
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Figure 5. Zmanim bug 50 (simplified) 
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Figure 6. List view example 

//inefficient version

public View getView(int pos, View recycledView, ViewGroup parent) {

//list item layout inflation

View item = mInflater.inflate(R.layout.listItem, null);

//find inner views

TextView txtView = (TextView) item.findViewById(R.id.text);

ImageView imgView = (ImageView) item.findViewById(R.id.icon);

//update inner views

txtView.setText(DATA[pos]);

imgView.setImageBitmap((pos % 2) == 1 ? mIcon1 : mIcon2);

return item;

}

//apply view holder pattern

public View getView(int pos, View recycledView, ViewGroup parent) {

ViewHolder holder;

if(recycledView == null) { //no recycled view to reuse

//list item layout inflation

recycledView = mInflater.inflate(R.layout.listItem, null);

holder = new ViewHolder();

//find inner views and cache their references

holder.text = (TextView) recycledView.findViewById(R.id.text);

holder.icon = (ImageView) recycledView.findViewById(R.id.icon);

recycledView.setTag(holder);

} else { 

//reuse the recycled view, retrieve the inner view references

holder = (ViewHolder) recycledView.getTag();

}

//update inner view contents

holder.text.setText(DATA[pos]);

holder.icon.setImageBitmap((pos % 2) == 1 ? mIcon1 : mIcon2);

return recycledView;

}

//view holder class for caching inner view references

public class ViewHolder {

TextView text;

ImageView icon;

}
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Figure 7. View holder pattern 

Our study identified three common performance bug patterns: 

(1) lengthy operations in main threads, (2) wasted computation 

for invisible GUI, and (3) frequently-invoked heavy-weight 

callbacks. Researchers and practitioners should design effective 

techniques to prevent and detect such performance bugs. 
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performance bugs by simple daily operations. Second, smartphone 
applications run on devices with small-sized touch screens. Users 
interact with these devices in a way that is very different from 
what they do with PCs. For example, users perform screen scroll-
ing much more frequently on smartphones than on PCs. This 
makes GUI responsiveness and smoothness more crucial for 
smartphones. Our study reported that GUI-related bugs are perva-
sive and have become a dominant bug type that concerns Android 
applications’ performance. Third, smartphone applications run on 
devices with small-capacity batteries, but can access energy-
consuming components like GPS sensor and accelerometer, which 
are usually not available on PCs. Cost-ineffective uses of such 
components can lead to high energy consumption. Indeed, we 
found energy leaks were clearly severe in our studied Android 
applications. These comparisons help researchers and practition-
ers understand how performance bugs occur in smartphone appli-
cations, as well as explaining why they differ from their counter-
parts in traditional PC or server-side applications. 

The validity of our study results may be subject to several threats. 
The first is the representativeness of our selected Android applica-
tions. To minimize this threat, we selected eight large-scale and 
popularly-downloaded Android applications, which cover five 
different categories. We wish to generalize our findings to more 
applications, and we will show in Section 4 how our findings help 
detect performance bugs for a wider range of Android applica-
tions. The second threat is our manual inspection of the selected 
performance bugs. We understand that manual inspection can be 
error-prone. To reduce this threat, we asked participants to con-
duct manual inspection independently. We also re-examined and 
cross-validated all results for consistency. 

4. DETECTING PERFORMANCE BUGS 
In this section, we conduct a case study to investigate whether our 
empirical findings can help fight with performance bugs in real-
world Android applications. This case study aims to answer the 
following research question: 

 RQ5: Can we leverage our empirical findings, e.g., common 

bug patterns, to help developers identify performance optimi-

zation opportunities in real-world Android applications? 

To answer research question RQ5, we built a static code analyzer, 
PerfChecker 4 , on Soot, a widely-used Java program analysis 
framework [47]. We applied PerfChecker to 29 Android applica-
tions discussed earlier to check its effectiveness of detecting per-
formance bugs. We first introduce PerfChecker’s implementation 
in Section 4.1, and then report our study results in Section 4.2. 

4.1 Performance Bug Checking Algorithms 
PerfChecker takes as input an Android application’s Java 

bytecode, and generates warnings if it detects any issues that may 

affect application performance. Its current implementation sup-

ports detecting two of our identified performance bug patterns: (1) 

lengthy operations in main threads, and (2) violation of the view 

holder pattern (as a concrete case of the “frequently invoked 

heavy-weight callbacks” bug pattern). We did not include the 

“wasted computation for invisible GUI” bug pattern in this study. 

This is because our previous work [30] has proposed a cost-

benefit analysis to detect performance bugs of this pattern and 

demonstrated the effectiveness of such analysis. Therefore, we in 

this paper focus on the other two performance bug patterns. 

Detecting lengthy operations in main threads. PerfChecker first 
conducts a class hierarchy analysis to identify a set of check-
points. These checkpoints include those lifecycle handlers defined 
in application component classes (e.g., those extending the Activi-
ty class) and GUI event handlers defined in GUI widget classes. 
According to Android’s single thread policy, these checkpoints 
are all executed in an Android application’s main thread. Then 
PerfChecker constructs a call graph for each checkpoint, and 
traverses this graph to check whether the checkpoint transitively 

                                                                 
4 PerfChecker can be obtained at: http://sccpu2.cse.ust.hk/perfchecker 

Table 4. Subjects and the detected bug pattern instances in them 

Application name 
Application  

category 

Revision 

no. 

Size 

(LOC) 
Downloads Availability 

Bug pattern instances 
Bug ID(s) 

VH (69) LM (57) 

Ushahidi Communication 59fbb533d0 43.3K  10K ~ 50K GitHub [48] 9* 2 146, 159 

c:geo Entertainment 6e4a8d4ba8 37.7K 1M ~ 5M GitHub [8] 0 5 3054 

Omnidroid Productivity 865 12.4K 1K ~ 5K Google Code [38] 9 8 182, 183 

Open GPS Tracker Travel & Local 14ef48c15d 18.1K 100K ~ 500K Google Code [39] 1 0 390 

Geohash Droid Entertainment 65bfe32755 7.0K 10K ~ 50K Google Code [16] 0 1 48 

Android Wifi Tether Communication 570 9.2K 1M ~ 5M Google Code [4] 1 3 1829, 1856 

Osmand Travel & Local 8a25c617b1 77.4K 500K ~ 1M Google Code [40] 18 17 1977, 2025 

My Tracks Health & Fitness e6b9c6652f 27.1K 10M ~ 50M Google Code [34] 2* 0 1327 

WebSMS Communication 1f596fbd29 7.9K 100K ~ 500K Google Code [49] 0 1 801 

XBMC Remote Media & Video 594e4e5c98 53.3K 1M ~ 5M Google Code [50] 1 0 714 

ConnectBot Communication 716cdaa484 33.7K 1M ~ 5M Google Code [10] 0 6 658 

Firefox Communication 895a9905dd 122.9K 10M ~ 50M Mozilla Repositories [33] 1 0 899416 

APG Communication a6a371024b 98.2K 50K ~ 100K Google Code [6] 4 8 140, 144 

FBReaderJ Books & References 0f02d4e923 103.4K 5M ~ 10M GitHub [13] 6* 6 148, 151 

Bitcoin Wallet Finance 12ca4c71ac 35.1K 100K ~ 500K Google Code [7] 4 0 190 

AnySoftKeyboard Tools 04bf623ec1 26.0K 500K ~ 1M GitHub [5] 2* 0 190 

OI File Manager Productivity f513b4d0b6 7.8K 5M ~ 10M GitHub [37] 1* 0 39 

IMSDroid Media & Video 553 21.9K 100K ~ 500K Google Code [24] 10 0 457 

1. “VH” means “Violation of the view Holder pattern”, and “LM” means “Lengthy operations in Main threads”. 

2. Underlined bug pattern instances have been confirmed by developers as real performance issues, and “*” marked instances have been fixed by developers 

accordingly. For more details, readers can visit corresponding subject’s source repositories and bug tracking systems by our provided links and bug IDs. 
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invokes any heavy APIs, e.g., networking, database query, file IO, 
or other expensive APIs like those for Bitmap resizing. 
PerfChecker would report a warning for any of such findings. 

Detecting violation of the view holder pattern. Similarly, 
PerfChecker first conducts a class hierarchy analysis to identify a 
set of checkpoints including all getView() callbacks in concerned 
list views’ adapter classes. PerfChecker then constructs a program 
dependency graph for each checkpoint, and traverses this graph to 
check whether the following rule is violated: list item layout infla-
tion and inner view retrieval operations should be conditionally 
conducted based on whether there are reusable list items. 
PerfChecker would report a warning for any such of violations. 

4.2 Study Results and Developer’s Feedback 
We applied PerfChecker to analyze the latest version of all 29 
Android applications, which comprise more than 1.1 million lines 
of Java code. Encouragingly, PerfChecker finished analyzing each 
application within a few minutes and detected 126 matching in-
stances of the two performance bug patterns in 18 of the 29 appli-
cations. Table 4 gives details of these applications. It reports for 
each application: (1) application name, (2) application category, 
(3) revision number, (4) program size, (5) number of downloads, 
(6) source code availability, (7) number of bug pattern instances 
detected, and (8) concerned bug ID(s). For example, Osmand is a 
large-scale (77.4K LOC) and popular (500K–1M downloads) 
Android application for navigation. PerfChecker detected 17 
checkpoints (i.e., handlers) invoking file IO and database query 
APIs in Osmand’s main thread, and 18 violations of the view 
holder pattern throughout Osmand. We reported our findings as 
well as optimization suggestions to corresponding developers and 
received prompt and enthusiastic feedback. Altogether, 68 detect-
ed bug pattern instances (54.0%; bold and underlined in Table 4) 
have been quickly (within a few workdays) confirmed by devel-
opers as real issues that affect application performance. These 
issues cover 9 of the 18 applications (50.0%). In addition, 20 of 
the 68 confirmed issues (29.4%; marked with “*” in Table 4) have 
been fixed in a timely fashion by following our suggestions. Some 
developers, although not immediately fixing their confirmed is-
sues, promised to optimize their applications according to our 
suggestions (e.g., My Tracks bug 1327). Other reported issues are 
pending (their concerned applications may not be under active 
maintenance). We also communicated with developers via bug 
reports and obtained some interesting findings as discussed below. 

First, developers showed great interest in our PerfChecker. For 

example, we received the following feedback: 

“Thanks for reporting this. I’ll take a look at it. Just curi-

ous, where is this static code checker? Anywhere I can 

play with it as well? Thanks.”             -- Ushahidi bug 159 

“Thanks for your report. The code is only a year old. 

That’s probably the reason (why it’s not well optimized). 

Your static analyzer sounds really interesting. I wonder if 

lint5can also check this.”           -- OI File Manager bug 39 

These comments suggest that developers welcome performance 

analysis tools to help optimize their Android applications. 

PerfChecker is helpful, especially for complex applications. For 

example, it detected some applications transitively calling heavy-

weight APIs in their main threads, and the call chains can last for 

tens of method calls (e.g., c:geo bug 3054). Currently, there are 

                                                                 
5 Lint is a static checker from Android development tools. It can detect 

performance threats like using getters instead of direct field accesses 

within a class, but does not support our identified performance bug pat-
terns. Details can be found at http://tools.android.com/tips/lint-checks. 

few industrial-strength tools supporting smartphone performance 

analysis. Thus there is a strong need for effective tools to help 

developers fight with smartphone application performance bugs. 

Second, some developers held conservative attitudes toward per-

formance optimization. They concerned much, e.g., (1) whether 

optimization can bring significant performance gains, (2) whether 

optimization can be done easily, and (3) whether optimization 

helps toward an application’s market success. They hesitated to 

conduct performance optimization when the optimization seem to 

require a lot of effort but bring no immediate benefits. For exam-

ple, WebSMS and Firefox developers responded as follows: 

“You are totally right. WebSMS is ported from J2ME and 

has a very old code base ... If I would write it from 

scratch, I’d do things differently. I once started refactor-

ing, but gave up in the end. There were other things to do, 

and the SMS user base is shrinking globally … If you 

want to help, just fork it on GitHub and let me merge your 

changes. I’d be very thankful.”          -- WebSMS bug 801 

“Thanks for the report! This shouldn't be a big concern; 

that UI is not a high-volume part. We'll keep this bug 

open, and I'd accept a patch which improves the code, but 

it's not a high-priority work item.”  -- Firefox bug 899416 

Finally, some developers were cautious and willing to conduct 

code optimization to improve performance or maintainability for 

their applications. For example, c:geo developers responded: 

“Such optimizations are ‘micro optimizations’, and they 

do not improve the user visible performance. Good devel-

opers however will still refactor code into the better ver-

sion, mostly to make it more readable.”    -- c:geo bug 222 

c:geo developers quickly fixed this reported performance bug. 

This may explain why c:geo keeps being highly-rated and popu-

larly-downloaded (1M–5M downloads) on the market. 

 

5. RELATED WORK 
Our studies in this paper relate to a large body of existing work on 
testing, debugging, bug detection and understanding for applica-
tion performance. We discuss some representative pieces of work 
in recent years. Some of them focus on smartphone application 
performance, while others are for PC or server-side applications.  

Detecting performance bugs. Much research effort has been 
devoted to automating performance bug/issue6 detection. For ex-
ample, Xu et al. used cost-benefit analysis to detect high-cost data 
structures that bring little benefit to a program’s output [52]. Such 
data structures can cause memory bloat. Xiao et al. used a predic-
tive approach to detect workload-sensitive loops that contain 
heavy operations, which often cause performance bottlenecks 
[51]. Recent work Toddler by Nistor et al. detected repetitive 
computations that have similar memory-access patterns in loops. 
Such computations can be unnecessary and subject to optimiza-
tion [35]. These pieces of work focused on performance issues in 
PC or server-side applications, while there are also other pieces of 
work particularly focusing on smartphone application perfor-
mance. For example, Pathak et al. studied no-sleep energy bugs in 

                                                                 
6 Some researchers prefer “performance issue” to “performance bug”. We 

do not have a preference and use the two terms interchangeably. 

Our static code analyzer detected quite a few new issues that 

affect performance in a wide range of real-world Android ap-

plication. Developers showed great interest in such tools. This 

validates the usefulness of our empirical findings. 
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Android applications and used reaching-definition dataflow analy-
sis to detect such bugs (e.g., an application forgets to unregister a 
used sensor) [41]. Following in this direction, Guo et al. further 
proposed a technique to detect general resource leaks, which often 
cause performance degradation [22]. Similar to Xu et al.’s [52] 
and Zhang et al.’s work [55], we previously leveraged cost-benefit 
analysis to detect whether an Android application uses sensory 
data in a cost-ineffective way [30]. Potential energy leak bugs can 
be reported after cross-state data utilization comparisons.  

Testing for application performance. Performance testing is 
challenging due to the lack of test oracles and effective test input 
generation techniques. Some ideas have been proposed to allevi-
ate such challenges. For example, Jiang et al. used performance 
baselines extracted from historical test runs as tentative oracles for 
new test runs [26]. Grechanik et al. learned rules from existing 
test runs, e.g., what inputs have led to intensive computations. 
They used such rules to select new test inputs to expose perfor-
mance issues [21]. These ideas work well for PC applications, but 
it is unclear whether they are effective for smartphone applica-

tions. Our empirical study discloses that many performance bugs 
in smartphone applications need certain user interaction sequences 
to manifest. Besides, smartphone applications also have some 
unique features, e.g., long GUI lagging can force an Android ap-
plication to close. Such requirements and features should be con-
sidered in order to design effective techniques to test the perfor-
mance of smartphone applications. We have observed initial at-
tempts along this direction. For example, Yang et al. tried to crash 
an Android application by adding a long delay after each heavy 
API call to test GUI lagging issues [53]. Jensen et al. studied how 
to generate user interaction sequences to reach certain targets in 
an Android application [25]. These attempts support performance 
testing of Android applications, but how to assess the testing ade-
quacy is still unclear. Our work thus motivates new attempts for 
performance testing adequacy criteria, as well as effective tech-
niques to expose performance issues in smartphone applications. 

Debugging and optimization for application performance. 
Existing work on debugging and optimization for smartphone 
application performance mainly falls into two categories. The first 
category estimates performance for smartphone applications to aid 
debugging and optimization tasks [23][29][42][57]. For example, 
Mantis [29] estimated the execution time for Android applications 
on given inputs. This helps identify problem-inducing inputs that 
can slow down an application, so that developers can conduct 
optimization accordingly. PowerTutor [57], Eprof [42] and eLens 
[23] estimated energy consumption for Android applications by 
different energy models. They can help debug energy leak issues. 
For example, eLens offered fine-grained energy consumption 
estimation at source code level (e.g., method and line level esti-
mation) to help locate energy bottlenecks. The second category of 
existing work uses profiling to log performance-related infor-
mation to aid debugging and optimization tasks [43][44][56]. For 
example, ARO [43] monitored cross-layer interactions (e.g., those 
between the application layer and the resource management layer) 
to help disclose inefficient resource usage, which commonly 
causes performance degradation to smartphone applications. Ap-
pInsight [44] instrumented application binaries to identify critical 
paths (e.g., slow execution paths) in handling user interaction 
requests, so as to disclose root causes for performance issues. 
Panappticon [56] shared the same goal as AppInsight, and further 
revealed performance issues from inefficient platform code or 
problematic application interactions. There are also performance 
debugging techniques [28][45] for PC applications. For example, 
LagHunter [28] detected user-perceivable latencies in interactive 
applications (e.g., Eclipse); Shen et al. constructed a system-wide 

I/O throughput model to guide performance debugging [45]. 
These techniques may not apply to multi-threaded and asynchro-
nous smartphone applications, because LagHunter tracked only 
synchronous UI event handling and Shen et al.’s work required a 
system-level performance model, which may not be available. 

Understanding performance bugs. Finally, understanding and 
learning characteristics of performance bugs is a very important 
step toward designing effective techniques to test and debug per-
formance issues. Existing characteristic studies have mainly fo-
cused on PC or server-side applications [27][36][54]. For exam-
ple, Zaman et al. [54] studied performance bug reports from Fire-
fox and Chrome (for PCs), and gave recommendations on how to 
better conduct bug identification, tracking and fixing.  Jin et al. 
[27] studied the root causes of performance bugs in several select-
ed PC or server-side applications, and identified efficiency rules 
for their detection. The most recent work by Nistor et al. [36] 
studied lifecycles of performance bugs (e.g., bug discovery, re-
porting and fixing), and obtained some interesting findings. For 
instance, there is little evidence showing that fixing performance 

bugs has a high chance of introducing new bugs. This encourages 
developers to conduct performance optimization whenever possi-
ble. However, there is a lack of similar studies on performance 
bugs in smartphone applications. Our work fills this gap by study-
ing 70 real-world performance bugs from large-scale and popular-
ly-downloaded Android applications. Our study also reveals some 
interesting findings, which differ from those for performance bugs 
in PC or server-side applications. These findings can help re-
searchers and practitioners to better understand performance bugs 
in smartphone applications, as well as proposing new techniques 
to fight with these bugs (e.g., as we did in our case study). 

6. CONCLUSION AND FUTURE WORK 
In this paper, we conducted an empirical study of 70 performance 
bugs from real-world Android applications. We reported our study 
results, which revealed some unique features of performance bugs 
in smartphone applications. We also identified some common bug 
patterns, which can support related research on bug detection, 
performance testing and debugging. To validate the usefulness of 
our empirical findings, we implemented a static code analyzer, 
PerfChecker, to detect two of our identified performance bug 
patterns. We applied it to 29 real-world Android applications. It 
detected 126 matching instances of the two bug patterns, and 68 
of them were quickly confirmed by developers as previously-
unknown performance issues. Besides, developers also fixed 20 of 
the confirmed issues accordingly. This encouragingly confirmed 
our empirical findings’ and PerfChecker’s usefulness in detecting 
performance bugs for smartphone applications. 

In future, we plan to conduct more investigations of performance 
bugs in smartphone applications, aiming to identify more bug 
patterns and build bug taxonomies. We also plan to design effec-
tive techniques to detect these bugs and help developers conduct 

performance optimization in an easier way. We hope that our 
work together with related work can help improve the perfor-
mance and user experience for smartphone applications, which 
will benefit millions of smartphone users. 
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