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Abstract—Smartphone applications’ energy efficiency is vital, but many Android applications suffer from serious energy ineffi-

ciency problems. Locating these problems is labor-intensive and automated diagnosis is highly desirable. However, a key chal-

lenge is the lack of a decidable criterion that facilitates automated judgment of such energy problems. Our work aims to address 

this challenge. We conducted an in-depth study of 173 open-source and 229 commercial Android applications, and observed 

two common causes of energy problems: missing deactivation of sensors or wake locks, and cost-ineffective use of sensory da-

ta. With these findings, we propose an automated approach to diagnosing energy problems in Android applications. Our ap-

proach explores an application’s state space by systematically executing the application using Java PathFinder (JPF). It moni-

tors sensor and wake lock operations to detect missing deactivation of sensors and wake locks. It also tracks the transformation 

and usage of sensory data and judges whether they are effectively utilized by the application using our state-sensitive data utili-

zation metric. In this way, our approach can generate detailed reports with actionable information to assist developers in validat-

ing detected energy problems. We built our approach as a tool, GreenDroid, on top of JPF. Technically, we addressed the chal-

lenges of generating user interaction events and scheduling event handlers in extending JPF for analyzing Android applications. 

We evaluated GreenDroid using 13 real-world popular Android applications. GreenDroid completed energy efficiency diagnosis 

for these applications in a few minutes. It successfully located real energy problems in these applications, and additionally found 

new unreported energy problems that were later confirmed by developers. 

Index Terms—Smartphone application, energy inefficiency, automated diagnosis, sensory data utilization, green computing. 

——————————      —————————— 

1 INTRODUCTION

HE smartphone application market is growing rapidly. 
Up until July 2013, the one million Android applica-

tions on Google Play store had received more than 50 bil-
lion downloads [29]. Many of these applications leverage 
smartphones’ rich features to provide desirable user expe-
riences. For example, Google Maps can navigate users 
when they hike in the countryside by location sensing. 
However, sensing operations are usually energy consump-
tive, and limited battery capacity always restricts such an 
application’s usage. As such, energy efficiency becomes a 
critical concern for smartphone users. 

Existing studies show that many Android applications 
are not energy efficient due to two major reasons [54]. 
First, the Android framework exposes hardware operation 
APIs (e.g., APIs for controlling screen brightness) to de-
velopers. Although these APIs provide flexibility, devel-
opers have to be responsible for using them cautiously 
because hardware misuse could easily lead to unexpected-
ly large energy waste [56]. Second, Android applications 
are mostly developed by small teams without dedicated 
quality assurance efforts. Their developers rarely exercise 
due diligence in assuring energy savings. 

Locating energy problems in Android applications is 
difficult. After studying 66 real bug reports concerning 
energy problems, we found that many of these problems 
are intermittent and only manifest themselves at certain 
application states (details are given later in Section 3). Re-
producing these energy problems is labor-intensive. De-
velopers have to extensively test their applications on dif-
ferent devices and perform detailed energy profiling. To 
figure out the root causes of energy problems, they have to 
instrument their programs with additional code to log 

execution traces for diagnosis. Such a process is typically 
time-consuming. This may explain why some notorious 
energy problems have failed to be fixed in a timely fashion 
[15], [40], [47]. 

In this work, we set out to mitigate this difficulty by au-
tomating the energy problem diagnosis process. A key 
research challenge for automation is the lack of a decida-
ble criterion, which allows mechanical judgment of energy 
inefficiency problems. As such, we started by conducting a 
large-scale empirical study to understand how energy 
problems have occurred in real-world smartphone appli-
cations. We investigated 173 open-source and 229 com-
mercial Android applications. By examining their bug 
reports, commit logs, bug-fixing patches, patch reviews 
and release logs, we made an interesting observation: Alt-
hough the root causes of energy problems can vary with different 
applications, many of them (over 60%) are closely related to two 
types of problematic coding phenomena: 

Missing sensor or wake lock deactivation. To use a 
smartphone sensor, an application needs to register a lis-
tener with the Android OS. The listener should be unregis-
tered when the concerned sensor is no longer being used. 
Similarly, to make a phone stay awake for computation, 
an application has to acquire a wake lock from the An-
droid OS. The acquired wake lock should also be released 
as soon as the computation completes. Forgetting to un-
register sensor listeners or release wake locks could quick-
ly deplete a fully charged phone battery [5], [8]. 

Sensory data underutilization. Smartphone sensors 
probe their environments and collect sensory data. These 
data are obtained at high energy cost and therefore should 
be utilized effectively by applications. Poor sensory data 
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utilization can also result in energy waste. For example, 
Osmdroid, a popular navigation application, may contin-
ually collect GPS data simply to render an invisible map 
[51]. This problem occurs occasionally at certain applica-
tion states. Battery energy is thus consumed, but collected 
GPS data fail to produce any observable user benefits. 

With these findings, we propose an approach to auto-
matically diagnosing such energy problems in Android 
applications. Our approach explores an Android applica-
tion’s state space by systematically executing the applica-
tion using Java PathFinder (JPF), a widely-used model 
checker for Java programs [67]. It analyzes how sensory 
data are utilized at each explored state, as well as monitor-
ing whether sensors/wake locks are properly used and 
unregistered/released. We have implemented this ap-
proach as an 18 KLOC extension to JPF. The resulting tool 
is named GreenDroid. As we will show in our later evalu-
ation, GreenDroid is able to analyze the utilization of loca-
tion data for the aforementioned Osmdroid application 
over its 120K states within three minutes, and successfully 
locate our discussed energy problem. To realize such effi-
cient and effective analysis, we need to address two re-
search issues and two major technical issues as follows. 

Research issues. While existing techniques can be 
adapted to monitor sensor and wake lock operations to 
detect their missing deactivation, how to effectively identi-
fy energy problems arising from ineffective uses of senso-
ry data is an outstanding challenge, which requires ad-
dressing two research issues. First, sensory data, once re-
ceived by an application, would be transformed into vari-
ous forms and used by different application components. 
Identifying program data that depend on these sensory 
data typically requires instrumentation of additional code 
to the original programs. Manual instrumentation is unde-
sirable because it is labor-intensive and error-prone. Sec-
ond, even if a program could be carefully instrumented, 
there is still no well-defined metric for judging ineffective 
utilization of sensory data automatically. To address these 
research issues, we propose to monitor an application’s 
execution and perform dynamic data flow analysis at a 
bytecode instruction level. This allows sensory data usage 
to be continuously tracked without any need for instru-
menting the concerned programs. We also propose a state-
sensitive metric to enable automated analysis of sensory 
data utilization and identify those application states 
whose sensory data have been underutilized. 

Technical issues. JPF was originally designed for ana-
lyzing conventional Java programs with explicit control 
flows [67]. It executes the bytecode of a target Java pro-
gram in its virtual machine. However, Android applica-
tions are event-driven and depend greatly on user interac-
tions. Their program code comprises many loosely cou-
pled event handlers, among which no explicit control flow 
is specified. At runtime, these event handlers are called by 
the Android framework, which builds on hundreds of 
native library classes. As such, applying JPF to analyze 
Android applications requires: (1) generating valid user 
interaction events, and (2) correctly scheduling event han-
dlers. To address the first technical issue, we propose to 
analyze an Android application’s GUI layout configura-
tion files, and systematically enumerate all possible user 
interaction event sequences with a bounded length at 

runtime. We show that such a bounded length does not 
impair the effectiveness of our analysis, but instead helps 
quickly explore different application states and identify 
energy problems. To address the second technical issue, 
we present an application execution model derived from 
Android specifications. This model captures application-
generic temporal rules that specify calling relationships 
between event handlers. With this model, we are able to 
ensure an Android application to be exercised with correct 
control flows, rather than being randomly scheduled on its 
event handlers. As we will show in our later evaluation, 
the latter brings almost no benefit to the identification of 
energy problems in Android applications. 

In summary, we make the following contributions in 
this article: 

 We empirically study real energy problems from 402 
Android applications. This study identifies two major 
types of coding phenomena that commonly cause ener-
gy problems. We make our empirical study data public 
for research purposes [31]. 

 We propose a state-based approach for diagnosing en-
ergy problems arising from sensory data underutiliza-
tion in Android applications. The approach systemati-
cally explores an application’s state space for such di-
agnosis purpose. 

 We present our ideas for extending JPF to analyze gen-
eral Android applications. The analysis is based on a 
derived application execution model, which can also 
support other Android application analysis tasks. 

 We implement our approach as a tool, GreenDroid, and 
evaluate it using 13 real-world popular Android appli-
cations. GreenDroid effectively detected 12 real energy 
problems that had been reported, and further found 
two new energy problems that were later confirmed by 
developers. We were also invited by developers to 
make a patch for one of the two new problems and the 
patch was accepted. These evaluation results confirm 
GreenDroid’s effectiveness and practical usefulness. 

In a preliminary version of this work [42], we demon-
strated the usefulness of sensory data utilization analysis 
in helping developers locate energy problems in Android 
applications. In this article, we significantly extend its ear-
lier version in five aspects: (1) adding a comprehensive 
empirical study of real energy problems collected from 402 
Android applications (Section 3); (2) formalizing the 
methodology of systematically exploring an Android ap-
plication’s state space for analyzing sensory data utiliza-
tion (Section 4.2); (3) enhancing our sensory data utiliza-
tion analysis with an outcome-based strategy, thus elimi-
nating human effort previously required for setting algo-
rithm parameters (Sections 4.4.3 and 6.1); (4) enhancing 
our evaluation with more real-world application subjects, 
research questions and result analyses (Section 5); (5) ex-
tending discussions of related research (Section 6). 

The rest of this article is organized as follows. Section 2 
introduces the basics of Android applications. Section 3 
presents our empirical study of real energy problems 
found in Android applications. Section 4 elaborates on our 
energy efficiency diagnosis approach. Section 5 introduces 
our tool implementation and evaluates it with real appli-
cation subjects. Section 6 discusses related work, and final-
ly Section 7 concludes this article. 
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2 BACKGROUND 

We select the Android platform for our study because it is 
currently one of the most widely adopted smartphone 
platforms and it is open for research [3]. Applications run-
ning on Android are primarily written in Java program-
ming language. An Android application is first compiled 
to Java virtual machine compatible .class files that contain 
Java bytecode instructions. These .class files are then con-
verted to Dalvik virtual machine executable .dex files that 
contain Dalvik bytecode instructions. Finally, the .dex files 
are encapsulated into an Android application package file 
(i.e., an .apk file) for distribution and installation. For ease 
of presentation, we in the following may simply refer to 
“Android application” by “application” when there is no 
ambiguity. An Android application typically comprises 
four kinds of components as follows [3]: 

Activities. Activities are the only components that al-
low graphical user interfaces (GUIs). An application may 
use multiple activities to provide cohesive user experienc-
es. The GUI layout of each activity component is specified 
in the activity’s layout configuration file. 

Services. Services are components that run at back-
ground for conducting long-running tasks like sensor data 
reading. Activities can start and interact with services. 

Broadcast receivers. Broadcast receivers define how an 
application responds to system-wide broadcasted messag-
es. It can be statically registered in an application’s config-
uration file (i.e., the AndroidManifest.xml file associated 
with each application), or dynamically registered at 
runtime by calling certain Android library APIs.  

Content providers. Content providers manage shared 
application data, and provide an interface for other com-

ponents or applications to query or modify these data. 
Each application component is required to follow a 

prescribed lifecycle that defines how this component is 
created, used, and destroyed. Figure 1 shows an activity’s 
lifecycle [2]. It starts with a call to onCreate() handler, and 
ends with a call to onDestroy() handler. An activity’s fore-
ground lifetime starts after a call to onResume() handler, 
and lasts until onPause() handler is called, when another 
activity comes to foreground. An activity can interact with 
its users only when it is at foreground. When it goes to 
background and becomes invisible, its onStop() handler 
would be called. When the users navigate back to a 
paused or stopped activity, that activity’s onResume() or 
onRestart() handler would be called, and the activity 
would come to foreground again. In exceptional cases, a 
paused or stopped activity may be killed for releasing 
memory to other applications with higher priorities. 

3 EMPIRICAL STUDY 

In this section, we report our findings from an archival 
study of real energy problems in Android applications. 
For ease of presentation, we may use “energy problems” 
and “energy bugs” interchangeably in subsequent discus-
sions. Our study aims to answer the following three re-
search questions: 

 RQ1 (Problem magnitude): Are energy problems in An-
droid applications serious? Do the problems have a severe 
impact on smartphone users? 

 RQ2 (Diagnosis and fixing efforts): Are energy problems 
relatively more difficult to diagnose and fix than non-energy 
problems? What information do developers need in the ener-
gy problem diagnosis and fixing process? 

 RQ3 (Common causes and patterns): What are common 

causes of energy problems? What patterns can we distill from 

them to enable automated diagnosis of these problems? 

Subject selection. To study these research questions, 
we first selected a set of commercial Android applications 
that suffered from energy problems. We randomly collect-
ed 608 candidates from Google Play store [28] using a web 
crawling tool [14]. These applications have release logs 
containing at least one of the following keywords: battery, 
energy, efficiency, consumption, power, and drain. We then 
performed a manual examination to ensure that these ap-
plications indeed had energy problems in the past and 
developers have fixed these problems in these applica-
tions’ latest versions (note that we did not have access to 
the earlier versions containing energy problems). This left 
us with 229 commercial applications. By studying availa-
ble information such as category, downloads and user 
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Figure 1. An activity’s lifecycle diagram 

Table 1. Project statistics of our studied Android applications 

34 open-source applications with 

reported energy problems
27/34 8/34 0/34 29/34 1K1 ~ 5K 5M1 ~ 10M 0.49M ~ 1.68M 15/322

139 open-source applications 

without reported energy problems
108/139 26/139 10/139 102/139 1K ~ 5K 50M ~ 100M 0.50M ~ 1.22M 24/32

229 commercial applications with 

energy problems
All are available on Google Play Store 1K ~ 5K 50M ~ 100M 0.77M ~ 2.02M 27/32

Application type Application availability Application downloads Covered 

categories
Google Code GitHub SourceForge Google Play Min. Max. Avg. 

1: 1K = 1,000 & 1M = 1,000,000; 2: According to Google’s classification, there are a total of 32 different categories of Android applications [28]. 
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comments, we can answer our research question RQ1. 
However, these commercial applications alone are not 
adequate enough for us to study the remaining two re-
search questions. This is because to answer RQ2–3, we 
need to know all details about how developers fix energy 
problems (e.g., code revisions, the linkage between these 
revisions and their corresponding bug reports). As such, 
we also need to study real energy problems with source 
code available, i.e., from open-source subjects. To find in-
teresting open-source subjects, we first randomly selected 
250 candidates from three primary open-source software 
hosting platforms: Google Code [26], GitHub [27] and 
SourceForge [63]. Since we are interested in applications 
with a certain level of development maturity, we refined 
our selection by retaining those applications that: (1) have 

at least 1,000 downloads (popularity), (2) have a public 
bug tracking system (traceability), and (3) have multiple 
versions (maintainability). These three constraints left us 
with 173 open-source subjects. We then manually inspect-
ed their code revisions, bug reports, and debugging logs. 
We found 34 of these 173 subjects have reported or fixed 
energy problems (details are given in Section 3.1). 

Table 1 lists project statistics for all 402 (173 + 229) sub-
jects studied. We observe that these subjects are all popu-
larly downloaded, and cover different application catego-
ries. We then performed an in-depth examination of these 
subjects to answer our research questions. The whole 
study involved one undergraduate student and four post-
graduate students with a manual effort of about 35 per-
son-weeks. We report our findings below. 

3.1 Problem Magnitude 

Our selected 173 open-source Android applications con-
tain hundreds of bug reports and code revisions. From 
them, we identified a total of 66 bug reports on energy 
problems, which cover 34 applications. Among these 66 
bug reports, 41 have been confirmed by developers. Most 
(32/41) confirmed bugs are considered to be serious bugs 
with a severity level ranging from medium to critical. Be-

Table 2. Top five categories of inefficient commercial subjects 

Personalization 59 (25.8%)

Tools 34 (14.8%)

Brain & Puzzle 15 (6.6%)

Arcade & Action 13 (5.7%)

Travel & Local 11 (4.8%)

Category Number of inefficient commercial applications

 

Table 3. Diagnosis and fixing efforts for energy bugs in open-source Android applications 

DroidAR1 5K3 ~ 10K 27* Medium 207 18,106 7 3 4 18

Recycle Locator 1K ~ 5K 33* Medium 69 3,241 1 1 1 5

Sofia Public Transport Nav. 10K ~ 50K 38* Medium 156 1,443 19 2 3 7

Sofia Public Transport Nav. 10K ~ 50K 76* Critical 156 1,649 1 1 1 1

Google Voice Location6 10K ~ 50K 4* Medium 20 4,632 330 10 4 37

BitCoin Wallet 10K ~ 50K 86 Medium 1bbc6295083c 27,220 30 1 2 4

Osmdroid 10K ~ 50K 53* Medium 751 13,385 243 1 1 4

Osmdroid 10K ~ 50K 76* Medium 315 8,636 11 1 1 5

Zmanim 10K ~ 50K 50/56* Critical 323 4,807 35 1 6 14

Transdroid 10K ~ 50K 19* Medium Version 0.8.0 11,715 9 1 1 7

Geohash Droid 10K ~ 50K 24* Medium 6d8f10153a48 6,682 3 1 1 6

AndTweet6 10K ~ 50K 29* Medium 4a1f1f9683f2 8,908 240 1 6 22

K9Mail 1M3 ~ 5M 574 Medium 933 72,7235 101 1 2 9

K9Mail 1M ~ 5M 864 Medium 317 72,723 49 3 6 8

K9Mail 1M ~ 5M 1031 Medium 1395s 72,723 20 1 1 1

K9Mail 1M ~ 5M 1643/1694 Medium 1731 72,723 6 2 3 2

K9Mail 1M ~ 5M N/A4 N/A 4542e64 72,723 N/A 1 1 2

Open-GPSTracker6 100K ~ 500K 70 Critical 33f6e78aad9a 4,447 2 1 3 9

Open-GPSTracker6 100K ~ 500K 128* Low 3aa9fb4d4ffb 9,174 9 5 7 8

Ebookdroid 500K ~ 1M 23* Medium 138 14,351 2 1 4 5

CSipSimple 500K ~ 1M 1674 Critical 1386 54,966 6 1 1 1

c:geo2 1M ~ 5M 1709 Critical cecda72 33,514 16 1 2 9

BableSink6 1K ~ 5K N/A* N/A 9fbcbf01ce 1,718 N/A 1 1 1

CWAC-Wakeful 1K ~ 5K N/A* N/A c7d440f115 896 N/A 1 1 1

Ushahidi6 10K ~ 50K N/A* N/A 337b48f 10,186 N/A 1 2 9

Application name Downloads

Issue information Diagnosis and fixing efforts

Issue no.
Severity

level

Fixed revision

no.

Inefficient revision 

size (LOC)

Issue open 

duration (Days)

# of revisions 

to fix

# of changed 

classes

# of changed 

methods

1,: Applications from DroidAR to CSipSimple are hosted on Google Code. 2: Applications from c:geo to CommonsWare are hosted on GitHub. 
3: 1K = 1,000 & 1M = 1,000,000; 4: The symbol “N/A” means “unknown”, and the corresponding bugs are found by studying commit logs. 
5: The size of K9Mail is based on revision fdfaf03b7a because we failed to access its original SVN repository after it switched to use Git. 
6: All application except Google Voice Location, AndTweet, Open-GPSTracker, BabbleSink and Ushahidi are still actively maintained (continuous code revisions). 



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2323982, IEEE Transactions on Software Engineering

sides that, we found 30 of these confirmed bugs have been 
fixed by corresponding code revisions, and developers 
have verified that these code revisions have indeed solved 
corresponding energy problems. 

On the other hand, regarding the 229 commercial An-
droid applications that suffered from energy problems, we 
studied their user reviews and obtained three findings. 
First, we found from the reviews that hundreds of users 
complained that these applications drained their 
smartphone batteries too quickly and caused great incon-
venience for them. Second, as shown in Table 1, these en-
ergy problems cover 27 different application categories, 
which are quite broad as compared to the total number of 
32 categories. This shows that energy problems are com-
mon to different types of applications. Table 2 lists the top 
five categories for illustration. Third, these 229 commercial 
applications have received more than 176 million down-
loads in total. This number is significant, and shows that 
their energy problems have potentially affected a vast 
number of users. 

Based on these findings, we derive our answer to re-
search question RQ1: Energy problems are serious. They exist 
in many types of Android applications and affect many users. 

3.2 Diagnosis and Fixing Efforts 

To understand how difficult the diagnosis and fixing of 
energy problems can be, we studied 25 out of the 30 fixed 
energy bugs in open-source applications. Five fixed bugs 
were ignored in our study because we failed to recover the 
links between their bug reports and corresponding code 
revisions.1 We report our findings in Table 3. For each 
fixed energy bug, Table 3 reports: (1) bug ID, (2) severity 
level, (3) revision in which the bug was fixed, (4) program 
size of the inefficient revision, (5) duration in which the 
bug report is open, (6) number of revisions for fixing the 
bug, and (7) number of classes and methods that were 
modified for fixing the bug. We also studied the 11 (= 41 − 
30) confirmed but not fixed energy problems in open-
source applications since four of the eight concerned ap-
plications are still actively maintained. We studied how 

                                                           
1 Our manual examination of commit logs around bug fixing dates also 
failed to find bug-fixing code revisions. 

long their bug reports stayed open as well as the duration 
of their related discussions. From these studies, we made 
the following three observations. 

First, 24 out of the 25 energy problems listed in Table 3 
are serious problems whose severity ranges from medium 
to critical. Developers take, on average, 54 workdays to 
diagnose and fix them. For comparison, we checked the 
remaining 1,967 non-energy bugs of similar severity (i.e., 
medium to critical) reported on these applications before 
March 2013. We found that these non-energy bugs were 
fixed, on average, within 43 workdays. Figure 2 gives a 
detailed box plot of open duration for the energy and non-
energy bugs we studied. For example, the median open 
duration for non-energy bugs is five days while the medi-
an open duration for energy bugs is 11 days. Such compar-
ison results suggest that energy problems are likely to take 
a longer time to fix. We further conducted a Mann-
Whitney U-test [44] of the following two hypotheses: 
 Null hypothesis H0. Fixing energy problems does not 

take a significantly longer time than fixing non-energy 
problems. 

 Alternative hypothesis H1. Fixing energy problems 
takes a significantly longer time than fixing non-energy 
problems. 
Our test results show that the p-value is 0.0327 (< 0.05), 

indicating that the null hypothesis H0 can be rejected with 
a confidence level of over 0.95. Therefore, we can conclude 
that energy problems take a relatively longer time to fix. 

Second, for the 11 confirmed but not fixed energy prob-
lems, we found that developers closed five of them be-
cause they failed to reproduce corresponding problems 
and they did not receive user complaints after some seem-
ingly irrelevant code revisions. For three of the remaining 
six problems, we found that developers are still working 
on fixing them without success [15], [40], [47]. Their three 
associated bug reports have been remained open for more 
than two years. For example, CSipSimple is a popular ap-
plication for video calls over the Internet. Developers have 
discussed its energy problem (issue 81) tens of times, try-
ing to find the root cause, but failed to make any satisfac-
tory progress so far. Due to this, some disappointed users 
uninstalled CSipSimple, as indicated from their comments 
on the bug report [15]. 

Third, as shown in Table 3, in 21 out of 25 cases, devel-
opers fixed the reported energy problems in one or two 
revisions. These fixes require non-trivial effort. For exam-
ple, 16 out of these 25 fixes require modifying more than 5 
methods. On average, developers fixed these 25 problems 
by modifying 2.6 classes and 7.8 methods.  

We also looked into discussions on fixed energy bugs. 
We found that many of these bugs are intermittent. Devel-
opers generally consider these intermittent bugs as com-
plex issues. In order to reproduce them, developers have 
to know details about how users interact with their appli-
cations before these problems occur. Developers often 
have to analyze debugging information logged at runtime 
in order to identify the root causes of these problems. For 
example, to facilitate energy waste diagnosis, K9Mail de-
velopers gave special instructions on how users could 
provide useful debugging logs [39]. This may become ad-
ditional overhead for smartphone users when they report 
energy problems. 
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Figure 2. Open duration of energy and non-energy bugs 
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Based on these findings, we derive our answer to re-
search question RQ2: It is relatively more difficult to diagnose 
and fix energy problems, as compared to non-energy problems; 
user interaction contexts and debugging logs can help problem 
diagnosis, but they require additional user-reporting efforts, 
which may not be desirable. 

3.3 Common Patterns of Energy Problems 

Energy inefficiency is a non-functional issue whose causes 
can be complex and application-specific. For example, 
CSipSimple issue 1674 [17] happened because the applica-
tion monitored too many broadcasted messages, and its 
issue 744 [16] was caused by unnecessary talking with a 
verbose server. Nevertheless, by studying the bug-fixing 
code and bug report comments of the earlier mentioned 25 
fixed energy problems, we observe that 16 of them (64.0%) 
are due to misuse of sensors or wake locks. These prob-
lems are marked with “*” in Table 3. 

To confirm that misuse of sensors or wake locks can in-
deed lead to energy problems in Android applications, we 
analyzed the API usage of all 402 applications. On the An-
droid platform, applications need to call certain APIs to 
invoke system functionalities. For example, an application 
needs to call the PowerManager.WakeLock.acquire() API 
to acquire a wake lock from Android OS so as to keep a 
device awake for computation. As such, API usage analy-
sis can disclose which Android features are being used by 
an application. To analyze API usage of our 173 open-
source applications, we compiled their source code to ob-
tain Java bytecode. For commercial applications, we han-
dled them differently. We first downloaded their .apk files 
from Google Play store using an open-source tool Real 
APKLeecher [60]. 2  We then transformed their Dalvik 
bytecode (contained in the .apk files) to Java bytecode us-
ing dex2jar [19], a popular Dalvik bytecode retargeting 
tool [49]. Finally, we scanned the Java bytecode of each 
application to analyze their API usage. From the analysis, 
we obtained two major findings. First, 46.7% (14/30) open-
source applications that use sensors and 68.0% (17/25) 
open-source applications that acquire wake locks were 
confirmed to have energy problems. Second, 51.1% 
(117/229) energy inefficient commercial applications use 
sensors or wake lock. These findings suggest that misuse 
of sensors or wake locks could be closely associated with 
energy problems in Android applications. 

Based on these findings, we further studied the discus-
sions on fixed energy problems and their bug-fixing 
patches. We then observed two types of coding phenome-

                                                           
2 The original Real APKLeecher is GUI-based. We modified it to support 
command line usage for study automation. The modified version can be 
obtained at: http://sccpu2.cse.ust.hk/greendroid. 

na concerning sensor or wake lock misuse that can lead to 
serious energy waste in Android applications: 

Pattern 1: Missing sensor or wake lock deactivation. 
To use a sensor, an application needs to register a listener 
with Android OS, and specify a sensing rate [5]. A listener 
defines how an application reacts to sensor value or status 
changes. When a sensor is no longer needed, its listener 
should be unregistered in time. As stated in Android doc-
umentation, forgetting to unregister sensor listeners can 
lead to unnecessary and wasted sensing operations [5]. 
Similarly, to keep a smartphone awake for computation, 
an application needs to acquire a wake lock from Android 
OS and specify a wake level. For example, a full wake lock 
can keep a phone’s CPU awake and its screen on at full 
brightness. The acquired wake lock should be released as 
soon as the computation completes. Forgetting to release 
wake locks in time can quickly drain a phone’s battery [8]. 
For example, Figure 3 gives a developer’s comment on an 
energy problem in AndTweet, a Twitter client [9]. 
AndTweet starts a background service AndTweetService 
right upon receiving a broadcast message indicating that 
Android OS has finished booting. When AndTweetService 
starts, it acquires a partial wake lock, which is not released 
until AndTweetService is destroyed. However, due to a 
design defect, AndTweetService keeps running at back-
ground, unless it encounters an external storage exception 
(e.g., SD card being un-mounted) or is killed explicitly by 
users, while such cases are rare. As a result, AndTweet can 
waste a surprisingly large amount of battery energy due to 
this missing wake lock deactivation problem.3 

Pattern 2: Sensory data underutilization. Sensory data 
are acquired at the cost of battery energy. These data 
should be effectively used by applications to produce per-
ceptible benefits to smartphone users. However, when an 
application’s program logic becomes complex, sensory 
data may be “underutilized” in certain executions. In such 
executions, the energy cost for acquiring sensory data may 
outweigh the actual usages of these data. We call this phe-
nomenon “sensory data underutilization”. We observed 
that sensory data underutilization often suggests design or 
implementation defects that can cause energy waste. For 
example, Figure 4(a) gives the concerned code snippet of a 
location data underutilization problem in an entertain-
ment application Geohash Droid. This application is de-
signed for users who like adventures. It randomly selects a 
location for users and navigates them there using GPS 
sensors. As the code in Figure 4(a) shows, Geohash Droid 
maintains a long running GeohashService at background 
for location sensing. GeohashService registers a location 
listener with Android OS when it starts (Lines 7–16), and 
unregisters the listener when it finishes (Lines 22–25). 
Once it receives location updates, it refreshes the 
smartphone’s notification bar (Line 11), which provides 
users with quick access to their current locations. After 
that, it notifies remote listeners (e.g., the navigation map) 
to use updated location data (Lines 12, 27–36). Thus, loca-
tion data are used to produce perceptible benefits to users 
when remote listeners are actively listening to such loca-
tion updates. However, there are chances when no remote 

                                                           
3 For more details, readers can refer to the following classes in package 
com.xorcode.andtweet of application AndTweet-0.2.4: AndTweetService, 
AndTweetServiceManager, TimelineActivity and TweetListActivity [9]. 

AndTweet Issue 29: “Issue 29 is due to the design of

AndTweetService: It starts right after boot and acquires a partial wake

lock. According to Android documentation, the acquired wake lock

ensures that the CPU is always running. The screen might not be on.

This is why few users had noticed the issue before.”

Geohash Droid Issue 24: “GeohashService should slow down its

GPS updates to one every thirty seconds if nothing besides the

notification bar is waiting for updates.”
 

Figure 3. Developer comments on energy problems 
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listeners are alive (e.g., the navigation map will not be 
alive when it loses user focus). When this happens, Geo-
hash Droid would keep receiving the phone’s GPS coordi-
nates, simply for updating its notification bar [25]. Such 
updates do not reflect effective use of newly captured GPS 
coordinates, while the battery’s energy is continuously 
consumed. Geohash Droid developers received a lot of 
user complaints for such battery drain. After intensive 
discussions, developers identified the cause of this prob-
lem and chose to reduce the GPS sensing rate when there 
is no active remote listener for such location updates. Fig-
ure 3 shows their comment after fixing this energy prob-
lem. 

Another interesting example is the Osmdroid problem 
mentioned in Section 1. Figure 4 (b) gives a simplified ver-
sion of the concerned code. The application has three 
components: (1) MapActivity for displaying a map to its 
users, (2) GPSService for location sensing and data pro-
cessing in background, and (3) a broadcast receiver for 
handling location change messages (Lines 7–13). When 
MapActivity is launched, it starts GPSService (Lines 5–6), 
and registers its broadcast receiver (Lines 15–16). GPSSer-
vice then registers a location listener with the Android OS 
when it starts (Lines 36–47). When the application’s users 
change their locations (e.g., during a walk), GPSService 
would receive and process new location data (Line 39), 
and broadcast a message with the processed data (Lines 
41–43). The broadcast receiver would then use the new 

location data to refresh a map (Line 10). If the users have 
enabled location tracking, these location data would also 
be stored to a database (Line 11). If the Android OS plans 
to destroy MapActivity (Lines 18–22), GPSService would 
be stopped (Line 20), and both the location listener and 
broadcast receiver would be unregistered (Lines 21, 51). 
These all work seemingly smoothly. However, if Os-
mdroid’s users switch from MapActivity to any other ac-
tivity, MapActivity would be put to background (not de-
stroyed), but GPSService would still keep running for lo-
cation sensing. If the location tracking functionality is not 
enabled, all collected location data would be used to re-
fresh an invisible map. Then, a huge amount of energy 
would be wasted [51]. To fix this problem, developers 
chose to disable the GPS sensing conditionally (e.g., ac-
cording to whether the location tracking mode is enabled 
or not), when MapActivity goes to background.  

From the preceding two examples of sensory data un-
derutilization, we make three observations. First, locating 
sensory data underutilization problems can provide desir-
able opportunities for optimizing an application’s energy 
consumption. When such problems occur, the concerned 
application can deactivate related sensors or tune down 
their sensing rates to avoid unnecessary energy cost. Sec-
ond, to detect such sensory data underutilization prob-
lems, one should track how sensory data are transformed 
into different forms of program data and consumed in 
different ways. Third, sensory data underutilization prob-

public class MapActivity extends Activity {
private Intent gpsIntent;
private BroadcastReceiver myReceiver;

public void onCreate(){
gpsIntent = new Intent(GPSService.class);
startService(gpsIntent); //start GPSService
myReceiver = new BroadcastReceiver() {

public void onReceive(Intent intent) {
LocData loc = intent.getExtra();
updateMap(loc);
if(trackingModeOn) persistToDatabase(loc);  

}
}
//register receiver for handling location change messages
IntentFilter filter = new IntentFilter(“loc_change”);
registerReceiver(myReceiver, filter);

}  

public void onDestroy() {
//stop GPSService and unregister broadcast receiver
stopService(gpsIntent);
unregisterReceiver(myReceiver);

}
}

1.
2.
3.

4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.

public class GPSService extends Service {
private LocationManager lm;
private LocationListener gpsListener;

public void onCreate(){
//get a reference to system location manager
lm = getSystemService(LOCATION_SERVICE);
gpsListener = new LocationListener() {

public void onLocationChanged(Location loc) {
LocData formattedLoc = processLocation(loc);
//create and send a location change message
Intent intent = new Intent(“loc_change”);
intent.putExtra(“data”, formattedLoc);
sendBroadcast(intent);

}
};

//GPS listener registration
lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

}

public void onDestroy() {
//GPS listener unregistration
lm.removeUpdates(gpsListener);

}
}

31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43. 
44.
45.

46.
47.
48.

49.
50.
51.
52.
53.

public class GeohashService extends Service {
private ArrayList<RemoteListener> mListeners;
private LocationManager lm;
private LocationListener gpsListener;

public void onStart(Intent intent, int StartId){
mListeners = new ArrayList<RemoteListener>();
//get a reference to system location manager
lm = getSystemService(LOCATION_SERVICE);
gpsListener = new LocationListener() {

public void onLocationChanged(Location loc) {
updateNotificationBar(loc);
notifyRemoteListeners(loc);

}
};
//GPS listener registration
lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

}  

1.
2.
3.
4.

5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.

//more code from GeohashService
public void onDestroy() {

//GPS listener unregistration
lm.removeUpdates(gpsListener);

}

//notify each alive remote listener for loc change
public void notifyRemoteListeners(Location loc){

final int N = mListeners.size();
for(int i = 0; i < N; i++) {

RemoteListener listener = mListeners.get(i);
if(listener.isAlive()){

//remote listeners consume location data
listener.locationUpdate(loc);

}   
}

}
}

21.
22.
23.
24.
25.

26.
27.
28.
29.
30.
31.
32.
33. 
34.
35.
36.
37.

(a) Example from the Geohash Droid application (Issue 24)

(b) Example from the Osmdroid application (Issue 53)  
Figure 4. Motivating examples for sensory data underutilization energy problems 
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lems may occur only at certain application states. For ex-
ample, Geohash Droid wastes energy only when there is 
no active remote listener waiting for location updates. In 
Osmdroid, if its user has enabled the location tracking 
functionality before MapActivity goes to background, 
even if it is consuming non-trivial energy due to continu-
ous GPS sensing, we cannot simply consider this as energy 
waste. This is because the collected location data could be 
stored for future uses, producing perceptible user benefits 
afterwards. These three observations motivate us to con-
sider a state-based approach to analyzing sensory data 
utilization for Android applications. Such analysis can 
help developers judge whether their applications are us-
ing sensory data in a cost-effective way and provide opti-
mization opportunities for energy efficiency if necessary. 

3.4 Threats to Validity 

The validity of our empirical study may be subject to some 
threats. One is the representativeness of our selected An-
droid applications. To minimize this threat and avoid sub-
ject selection bias, we selected 173 open-source and 229 
commercial Android applications spanning 27 different 
categories. These applications have been popularly down-
loaded and can be good representatives of real-world An-
droid applications. Another potential threat is the manual 
inspection of our selected subjects. We understand that 
this manual process may be error-prone. To reduce this 
threat, we have all our data and findings independently 
inspected by at least two researchers. We cross-validated 
their inspection results for consistency. 

4 ENERGY EFFICIENCY DIAGNOSIS 

In this section, we elaborate on our energy efficiency diag-
nosis approach. 

4.1 Overview 

Our diagnosis is based on dynamic information flow anal-
ysis [35]. Figure 5 shows its high-level abstraction. It takes 
as inputs the Java bytecode and configuration files of an 
Android application. The Java bytecode defines the appli-
cation’s program logic, and can be obtained by compiling 
the application’s source code or transforming its Dalvik 
bytecode [49]. The configuration files specify the applica-
tion’s components, GUI layouts, and so on. The general 
idea of our diagnosis approach is to execute an Android 
application in JPF’s Java virtual machine, and systemati-
cally explore its application states. During the execution, 
our approach monitors all sensor registration/un-
registration and wake lock acquisition/releasing opera-
tions. It feeds mock sensory data to the application when 
related sensor listeners are properly registered. It then 
tracks the propagation of these sensory data as the appli-
cation executes, and analyzes how they are utilized at dif-
ferent application states. At the end of the execution, our 
approach compares sensory data utilization across ex-

plored states, and reports those states where sensory data 
are underutilized. It also checks which sensor listeners are 
forgotten to be unregistered, and which wake locks are 
forgotten to be released, and reports these anomalies. 

The above high-level abstraction looks straightforward, 
but contains some challenging questions: How can one exe-
cute an Android application and systematically explore its 
states? How can one identify those executions that involve sen-
sory data? How can one measure and compare sensory data 
utilization at application states explored by these executions? 
We answer these questions in the following. 

4.2 Application Execution and State Exploration 

Android applications are mostly designed to interact with 
smartphone users. Their executions are often triggered by 
user interaction events. Typically, an Android application 
starts with its main activity, and ends after all its compo-
nents are destroyed. During its execution, the application 
keeps handling received user interaction events and sys-
tem events (e.g., broadcasted events) by calling their han-
dlers according to Android specifications. Each call to an 
event handler may change the application’s state by modi-
fying its components’ local or global program data. As 
such, in order to execute an application and explore its 
state space in JPF, we need to: (1) generate user interaction 
events, and (2) guide JPF to schedule corresponding event 
handlers. 

Before going into the technical details, we first formally 
define our problem domain and clarify our concept of 
bounded state space exploration. We use 𝑃 to denote the An-
droid application under diagnosis, and 𝐸 to denote the set 
of possible user interaction events for this application. 

Definition 1 (User interaction event sequence): A user 
interaction event sequence 𝑠𝑒𝑞̅̅ ̅̅ = [𝑒1, 𝑒2, … , 𝑒𝑛], where each 
𝑒𝑖 ∈ 𝐸 is a user interaction event. Operation 𝑙𝑒𝑛(𝑠𝑒𝑞̅̅ ̅̅̅) re-
turns the length of the sequence 𝑠𝑒𝑞̅̅ ̅̅ , and operation 
ℎ𝑒𝑎𝑑(𝑠𝑒𝑞̅̅ ̅̅̅, 𝑘) returns a subsequence with the first 𝑘  user 
interaction events in 𝑠𝑒𝑞̅̅ ̅̅ . We denote the set of all possible 
user interaction event sequences as 𝑆𝐸𝑄. 

The 𝑆𝐸𝑄 set is unbounded as users can interact with an 
application in infinite ways. 

Definition 2 (Application execution): An execution 𝑡 of 
application 𝑃 is triggered by a sequence of user interaction 
events 𝑠𝑒𝑞̅̅ ̅̅̅. We denote such an execution as 𝑡 =
𝑒𝑥𝑒𝑐(𝑃, 𝑠𝑒𝑞̅̅ ̅̅ ). Then the set of all possible executions 𝑇 for 
the application 𝑃 is: 

𝑇 = {𝑒𝑥𝑒𝑐(𝑃, 𝑠𝑒𝑞̅̅ ̅̅̅) | 𝑠𝑒𝑞̅̅ ̅̅̅ ∈ 𝑆𝐸𝑄}. 

Definition 3 (State and state space): 4 During its execu-
tion, application 𝑃’s state changes from 𝑠0 , which is 𝑃’s 
initial state, to 𝑠′ after it handles a sequence of user interac-
tion events 𝑠𝑒𝑞̅̅ ̅̅̅, where 𝑙𝑒𝑛(𝑠𝑒𝑞̅̅ ̅̅̅) ≥ 1. We represent the new 
state 𝑠′ as 〈𝑠0, 𝑠𝑒𝑞̅̅ ̅̅̅〉. Then we can define the state space ex-
plored for application 𝑃  during its execution 𝑡 =
𝑒𝑥𝑒𝑐(𝑃, 𝑠𝑒𝑞̅̅ ̅̅̅) as: 

𝑆𝑡 = {〈𝑠0, ℎ𝑒𝑎𝑑(𝑠𝑒𝑞̅̅ ̅̅ ̅, 𝑘)〉 | 1 ≤ 𝑘 ≤ 𝑙𝑒𝑛(𝑠𝑒𝑞̅̅ ̅̅ ̅)}. 

As 𝑆𝐸𝑄 is unbounded, there exist an infinite number of 

                                                           
4 We discuss state changes at an event handling level as users have con-
trol on that. We do not consider finer-grained state changes or state 
equivalence in this work. 
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Figure 5. Approach overview 
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different executions for an application, that is, set 𝑇 is also 
unbounded. Therefore, we have to restrict total execution 
times and state space exploration in our diagnosis. We 
then define our bounded state space exploration, in which 
we control the length of user interaction event sequences. 

Definition 4 (Bounded state space exploration): Given 
a bound value 𝑏 (≥ 1) on the length of user interaction 
event sequences, our diagnosis examines the following 
executions for an Android application 𝑃: 

𝑇𝑏 = {𝑒𝑥𝑒𝑐(𝑃, 𝑠𝑒𝑞̅̅ ̅̅̅) | 𝑠𝑒𝑞̅̅ ̅̅̅ ∈ 𝑆𝐸𝑄 & 𝑙𝑒𝑛(𝑠𝑒𝑞̅̅ ̅̅̅) ≤ 𝑏}. 

For these executions, our diagnosis explores the follow-
ing space of states: 

𝑆𝑏 = ⋃ 𝑆𝑡𝑡∈𝑇𝑏 . 

After defining the bounded state space exploration 
concept, we proceed to introduce our diagnosis approach. 
To effectively explore an Android application’s state 
space, we need to generate event sequences of user inter-
actions and schedule corresponding event handlers. These 
two technical issues are addressed below. 

Event sequence generation. Our runtime controller, as 
illustrated in Figure 5, simulates user interactions by gen-
erating corresponding event sequences. Conceptually, the 
generation process contains two parts: static and dynamic. 
In the static part, i.e., before executing an application, we 
first analyze the application’s configuration files to learn 
the GUI layouts of its activity components (recall that only 
activities have GUIs). Specifically, we map each GUI 
widget (e.g., a button) of an activity component to a set of 
possible user actions (e.g., button clicks). This constructs a 
user event set for each activity. In the dynamic part, i.e., 
when executing an application, our runtime controller 
monitors the application’s execution history and current 
state. When the application waits for user interactions 
(e.g., after an activity’s onResume() handler is called), our 
controller would generate required events and feed them 
to the foreground activity for handling. This is done in an 
exhaustive way by enumerating all possible events associ-
ated with each activity component. Our controller contin-
ues doing so until the length of a generated event se-
quence reaches the required upper bound or the applica-
tion exits. In this way, we generate all possible event se-
quences bounded by a length limit 𝑏, and explore its cor-
responding bounded state space 𝑆𝑏 . For ease of under-
standing, we provide an example to illustrate the event 
sequence generation process. 

The example application in Figure 6 contains two activ-
ities: MainActivity and AccountEditActivity. When this 
application starts, MainActivity would appear first. Its 
users can click the “Edit account” button to edit their ac-
count information in another AccountEditActivity’s win-
dow (MainActivity would then be put to background). 
After editing, users can save the changes by clicking the 
“Save” button or discard the changes by clicking the 
“Cancel” button. This also brings users back to the previ-
ous MainActivity’s window (AccountEditActivity would 
then be destroyed). To exit the application, the users can 
click the “Exit app” button in the MainActivity’s window. 
For ease of presentation, suppose that: (1) we consider 
only button click events (our tool implementation can 
handle other types of events, e.g., filling textboxes and 
selecting from dropdown lists), (2) the event sequence 
length bound is set to four, and (3) each generated event is 
correctly handled (e.g., after clicking “Exit app”, the appli-
cation indeed exits). 

Based on these assumptions, we consider generating 
event sequences for this example application. Our control-
ler first constructs user event sets for the two activities. For 
instance, the user event set for MainActivity is {click “Edit 
account” button, click “Exit app” button}. At runtime, 
when MainActivity waits for user interactions, our con-
troller can enumerate and generate all events in MainAc-
tivity’s user event set in turn. If it generates an “Edit ac-
count” button click event, AccountEditActivity would 
come to foreground. When AccountEditActivity is ready 
for user interactions, our controller similarly enumerates 
and generates all events in AccountEditActivity’s user 
event set in turn. This event generation process continues 
until the length of a generated event sequence reaches four 
or the application exits (e.g., when the “Exit app” button is 
clicked). The tree on the right of Figure 6 illustrates this 
event sequence generation process. The nodes on the tree 
represent different application states and the labels on 
edges that connect the nodes represent button click events. 
Each path from the root node to a leaf node corresponds to 
one user interaction event sequence. For example, the path 
with dashed edges represents an event sequence of length 
three (the first application starting event is not counted): 
starting the application, clicking “Edit account” button, 
clicking “Cancel” button, and finally clicking “Exit app” 
button. Other sequences can be explained similarly. 

Event handler scheduling. With event sequences gen-
erated to represent user interactions, we now consider 
how to schedule event handlers properly. As mentioned 
earlier, Android applications consist of a set of loosely-
coupled event handlers among which no explicit control 
flow is specified. Existing analysis techniques for Android 
applications commonly assume that developers should 
specify calling relationships between these event handlers 
[56]. However, this is not practical. Real-world Android 
applications typically contain hundreds of event handlers 
(e.g., the application DroidAR used in our evaluation has 
149 event handlers). Manually specifying calling relation-
ships between these event handlers is labor-intensive and 
error-prone. Therefore, in this work we do not make such 
an assumption. Instead, we propose to derive an applica-
tion execution model (or AEM) from Android specifica-
tions, and leverage it to guide the runtime scheduling of 
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Figure 6. Illustration of event sequence generation 
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event handlers. The extracted AEM model plays the role 
of enforcing calling relationships between event handlers. 
Specifically, the AEM model is a collection of temporal 
rules that are prescribed by the Android framework and 
followed by all Android applications (i.e., such rules are 
application-generic). We define the model as follows: 

𝐴𝐸𝑀 = {𝑅𝑖  | 𝑅𝑖 𝑖𝑠 𝑎 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝑟𝑢𝑙𝑒 𝑜𝑓 𝑓𝑜𝑟𝑚 [𝜓], [𝜙] ⟹ 𝜆}. 

In each rule 𝑅𝑖 , symbols 𝜓  and 𝜆  represent two tem-
poral formulae expressed in linear-time temporal logic. 
They make assertions about the past and future, respec-
tively. Symbol 𝜙 represents a propositional logic formula 
making assertions about the present. Specifically, 𝜓  de-
scribes what has happened in history during an applica-
tion execution, 𝜙 evaluates the current situation (e.g., what 
system or user event is received), and 𝜆 claims what is 
expected. Therefore, the whole rule expresses the meaning: 
If both 𝜓 and 𝜙 hold, 𝜆 is expected. 

We give some examples of temporal rules in Table 4. 
For the entire collection of 29 rules,5 readers may refer to 
our technical report [41]. In these example rules, proposi-
tional connectives like ∧, ⟹, and ¬ follow their traditional 
interpretations, i.e., conjunction, implication, and nega-
tion. For temporal connectives, we follow Etessami et al.’s 
notation [23], which is explained in the following. Unary 
temporal connective 𝑋  means “next”, and its past time 
analogue 𝑋−1  means “previously”. Binary temporal con-
nective 𝑆 means “since”. Specifically, a temporal formula 
“𝐹1 𝑆 𝐹2” means that 𝐹2 held at some time in the past, and 
since then 𝐹1 always holds. 

We give explanations for the rules in Table 4. The first 
rule states that an activity’s onStart() handler is to be 
called after its onCreate() handler completes as long as this 
activity is not forced to finish. The second rule states that a 
GUI widget’s click event handler is to be called if: (1) the 
widget (e.g., a button) is clicked, (2) its enclosing activity is 
at foreground (i.e., the activity’s onPause() handler has not 
been called since the last call to its onResume() handler), 
and (3) its click event listener is properly registered. The 
third rule disables the call to a message event handler be-
fore its registration and after its unregistration. The last 
rule states that a static message event handler is to be 
called upon any broadcasted message. 

Our AEM model, i.e., the collection of 29 temporal rules, 
is converted to a decision procedure which determines the 
event handlers to be called in the next step according to an 
application’s execution history and its newly received 
events (events are handled in turn). This event handler 
scheduling is always deterministic, except when there are 
multiple receivers registered (either dynamically or stati-

                                                           
5 We do not claim the completeness of the AEM model. We will show in 
our later evaluation that the current version of our AEM model already 
suffices for verifying many real-world Android applications. 

cally) for broadcast messages from the same source.6 If this 
is the case, the onReceive() handlers of those registered 
receivers are to be called according to the receiver registra-
tion orders. By this means, we can exercise an Android 
application in JPF’s Java virtual machine, and systemati-
cally explore its state space. 

4.3 Missing Sensor or Wake Lock Deactivation 

We next discuss how to detect energy problems when ex-
ploring an application’s state space. As mentioned earlier, 
missing sensor or wake lock deactivation is one common 
cause of energy problems. This shares some similarity 
with traditional resource leak problems, where a program 
fails to release its acquired system resources (e.g., memory 
blocks, file handles, etc.) [66]. Resource leak problems can 
cause system performance degradation (e.g., slower re-
sponse), and similarly missing deactivation of sensors or 
wake locks can also waste valuable battery energy. Besides, 
according to Android process management policy [7], sen-
sors and wake locks are not automatically deactivated 
even when the application components that activated 
them are destroyed (e.g., onDestroy() handler is called). 
We will give an example and details in Section 5.2.1. Based 
on the preceding state exploration efforts, we can now 
adapt existing resource leak detection techniques [10], [68] 
to detect missing sensor or wake lock deactivation. In par-
ticular, our diagnosis monitors the execution of an An-
droid application and keeps checking the violation of the 
following two policies: 
 Sensor management policy: A sensor listener l, once 

registered, should be unregistered eventually before 
the application component that registered l is destroyed.  

 Wake lock management policy: A wake lock wl, once 
acquired, should be released eventually before the ap-
plication component that acquired wl is destroyed.  
Note that such checking is feasible only after we have 

addressed the event sequence generation and event han-
dler scheduling problems for Android applications. 

4.4 Sensory Data Utilization Analysis 

During an Android application’s execution, its collect-
ed sensory data are transformed into different forms and 
consumed by different application components. We need 
to track these data usages for energy efficiency analysis. 
We do it at the bytecode instruction level by dynamic 
tainting. Our technique contains three phases: (1) tainting 
each collected sensory datum with a unique mark; (2) 
propagating taint marks as the application executes; (3) 
analyzing sensory data utilization at different application 
states. We elaborate on the three phases in the following. 

                                                           
6 Although we did not observe such cases in our experiments, registering 
multiple receivers for broadcast messages from the same source is 
grammatically acceptable in Android applications. 

Table 4. Example temporal rules 

Rule 1: When should an activity’s lifecycle handler act.onStart() be called?  −  𝑎𝑐𝑡. 𝑜𝑛 𝑟𝑒𝑎𝑡𝑒() , ¬ 𝐴 𝑇 𝐹   𝑆  𝐸 𝐸 𝑇 ⟹   𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡()

         hen sh  ld      id et s clic  event handler vie   n lic     e called 
(¬𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒()   𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒()) ∧ (¬    . 𝑟𝑒 𝑛𝑢𝑙𝑙        . 𝑟𝑒 (𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟)) ,
  𝐸        𝐸 𝐸 𝑇 ⟹   𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑜𝑛 𝑙𝑖𝑐𝑘()

Rule 3: When should a dynamic message handler rcv.onReceive() be called? ¬   . 𝑢𝑛𝑟𝑒 ()    𝑟  . 𝑟𝑒 () , 𝑀𝑆  𝐸 𝐸 𝑇 ⟹   𝑟  . 𝑜𝑛𝑅𝑒𝑐𝑒𝑖 𝑒()

Rule 4: When should a static message handler Receiver.onReceive() be called? 𝑇𝑟𝑢𝑒 , [𝑀𝑆  𝐸 𝐸 𝑇] ⟹   𝑅𝑒𝑐𝑒𝑖 𝑒𝑟. 𝑜𝑛𝑅𝑒𝑐𝑒𝑖 𝑒()
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4.4.1 Preparing and tainting sensory data 

In the first phase, we generate mock sensory data from an 
existing sensory data pool, which is controlled with differ-
ent precision levels. They are then fed to the application 
under analysis after each event handler call. The object 
reference to each sensory datum is initialized with a 
unique taint mark before the datum is fed to the applica-
tion. The taint mark will be propagated with the datum 
together for later analysis. 

4.4.2 Propagating taint marks 

At runtime, an Android application’s collected sensory 
data are transformed into different forms by assignment, 
arithmetic, relational, and logical operations. For example, 
the Osmdroid application in Figure 4(b) has its loc object 
(Line 38) transformed to another formattedLoc object (Line 
39), which further affects the intent object (Line 42). Later, 
by message communication, this intent object is propagat-
ed to a broadcast receiver and converted back to the loc 
object (Line 9), which may or may not affect database con-
tent, depending on the variable trackingModeOn’s value 
(Line 11). Such data flows need to be tracked to propagate 
taint marks so as to identify which program data depend 
on the collected sensory data. Based on this information, 
one is then able to analyze sensory data utilization. 

Our technique intercepts the execution of a subset of 

Java bytecode instructions at runtime and propagates taint 
marks in JPF’s Java virtual machine according to our taint-
ing policy.7 A key advantage of such an instruction-level 
taint propagation is that it does not require application-
specific program instrumentation, which is often time-
consuming and error-prone. Table 5 gives our tainting 
policy, which comprises 12 taint propagation rules. These 
rules handle taint propagations along data dependencies. 
They are expressed in the following form: 

𝑇(𝐴) = 𝑇(𝐵) ∪ 𝑇( ). 

This means that data B’s and C’s taint marks are 
merged to become data A’s taint mark. Note that B and C 
can be optional. Each taint propagation rule in Table 5 is 
designed for a set of bytecode instructions with similar 
semantics (explained in the lower part of Table 5). For ex-
ample, Rule 6 is for all binary calculation bytecode instruc-
tions (totally 37 instructions) such as fadd and iand. The 
instruction fadd adds two floating numbers popped from 
the operand stack in the current method call’s frame, and 
pushes the addition result back into this operand stack. 
Similarly, the instruction iand performs a bitwise “and” 

                                                           
7 On real devices, an Android application runs in a register-based Dalvik 
virtual machine, while JPF’s Java virtual machine is stack-based. This 
difference does not affect our analysis. 

Table 5. Taint propagation policy 

Index Bytecode instruction type # instructions Instruction semantics Taint propagation rule

1 Const-op C 15 stack[0]  C T(stack[0]) = Ø

2 Load-op index 25 stack[0]  localVarindex T(stack[0]) = T(localVarindex)

3 LoadArray-op arrayRef, index 8 stack[0]  arrayRef [index] T(stack[0]) = T(arrayRef) ⋃ T(arrayRef [index])

4 Store-op index 25 localVarindex stack’[0] T(localVarindex) = T(stack’[0])

5 StoreArray-op arrayRef, index 8 arrayRef [index]  stack’[0]  T(arrayRef [index]) = T(stack’[0])

6 Binary-op 37 stack[0]  stack’[1] ⊗ stack’[0] T(stack[0]) = T(stack’[0]) ⋃ T(stack’[1])

7 Unary-op 20 stack[0] ⊖ stack’[0] T(stack[0]) = T(stack’[0])

8* GetField-op index 1 stack[0]  stack’[0].instanceField T(stack[0]) = T(stack’[0].instanceField) ⋃ T(stack’[0])

9 GetStatic-op index 1 stack[0]  ClassName.staticField T(stack[0]) = T(ClassName.staticField)

10 PutField-op index 1 stack’[1].instanceField stack’[0] T(stack’[1].instanceField) = T(stack’[0])

11 PutStatic-op index 1 ClassName.staticField stack’[0] T(ClassName.staticField) = T(stack’[0])

12* Return-op(non-void) 5 callerStack[0]  calleeStack’[0] T(callerStack[0]) = T(calleeStack’[0]) 

Index Detailed instruction semantics (The semantics of the instructions whose index are underlined serve as examples)

1 Push a constant value C onto the operand stack (stack[0] represents the value at the stack top after an operation).

2, 3 Load the value of the #index local variable onto the operand stack.

4, 5 Pop and store the value at stack top to the #index local variable (stack’[0] represents the value at the stack top before an operation).

6, 7 Perform the binary operation ⊗ on the two values popped from the operand stack (i.e., stack’[0] and stack’[1]), and push the result back onto stack.

8, 9 Get a field value of an object on the heap and push the value onto the operand stack. The object reference is popped from the stack (i.e., stack’[0]).The 

  ject field’s name and type can  e f  nd  y referrin  t  the #index slot of the constant pool.

10,

11

Pop and store the value at the stack top (i.e., stack’[0]) to an object field on the heap. The object reference is popped from the stack (i.e., stack’[1]). The 

  ject field’s name and type can  e f  nd  y referrin  t  the #index slot of the constant pool.

12 Pop the value at the callee’s operand stack top (i.e., calleeStack’[0] , and p sh the val e  nt  the caller’s  perand stac  
 

Notes:  1  F r R le 8,  e f ll  ed TaintDr id’s ch ice t  pr pa ate   ject reference’s taint t  retrieved   ject field val es t  av id undertainting in 

certain cases [22]. For example, we only taint the reference of sensory data objects (instead of tainting all object fields since the object can have complex 

structures) when taint propagation starts. Rule 8 can correctly help propagate taint marks when the sensory data object fields are read (see Figure 7 for 

illustration). (2) Rule 12 does not conflict with the rule for handling control dependencies (see Section 4.4.2). They can be applied together. 
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operation on two integers popped from the operand stack 
in the current method call’s frame, and pushes the opera-
tion result back into the stack. For all such binary calcula-
tion bytecode instructions, our taint propagation works as 
follows (Rule 6): the result (at the top of the operand stack 
after the calculation, represented by stack[0] in Table 5) 
would be tainted with the same marks if any operand (at 
the top of the operand stack before the calculation, repre-
sented by stack’[0] and stack’[1] in Table 5) is tainted before 
calculation. Other taint propagation rules can be explained 
similarly. 

We illustrate the taint propagation process by a con-
crete example. Figure 7 lists the code snippet from an ap-
plication that uses accelerometer data to compute and dis-
play a phone’s current acceleration status (Lines 21–27). 
The application also monitors whether the phone is being 
shuffled (Line 3), and if yes, it would change its back-
ground to a different color and notify its user (Lines 4–11). 
In this example, the initial taint mark is associated with an 
object reference event. The event object contains the sensory 
data from a smartphone’s accelerometer. By object field 
access, the local array values of the isShuffled method get its 
assignment from the event object (Line 21). Since values is 
data dependent on the tainted object event, the taint mark 
is propagated to values according to Rule 8 (for handling 
object field reading instructions) and Rule 5 (for handling 
array element writing instructions). Then, by array ele-
ment readings and local variable assignments, this taint 
mark is propagated to local variables x, y, and z (Lines 22–
24) according to Rule 3 (for handling array element read-
ing instructions) and Rule 4 (for handling local variable 
assignment instructions). Next, a local variable accelera-
tionSquareRoot is calculated (Line 26). It is tainted accord-
ing to Rule 6 (for handling binary calculation instructions) 
and Rule 4 since it is data dependent on the tainted local 
variables x, y and z. Finally, method isShuffled’s return 
value is tainted according to a special rule that handles 
control dependencies. The rule taints a method’s return 
value if any of its arguments is tainted (to be further ex-
plained shortly). Later this return value is further assigned 
to local variable switchColor in method onSensorChanged 
(Line 3), and switchColor is also tainted with the same 
mark (Rule 4). This completes the whole taint propagation 
process. 

In our tainting process, we mainly consider data de-
pendencies. Regarding control dependencies, we adopt a 
strategy similar to those studied in related work [12], [62]. 
That is, we taint a method’s return value if any of its ar-
guments is tainted (including the method’s implicit “this” 
argument if applicable). This strategy/rule is based on the 
assumption that a method’s output (i.e., return value) 

should depend on its input in well-written programs. This 
is the only rule concerning control dependencies in our 
taint propagation process. We do it this way because 
tracking finer-grained control dependencies may incur 
significant performance overhead and even imprecision to 
analysis results [22], [37]. Our taint propagation terminates 
when the application under analysis finishes its handling 
of sensor event.8 This occurs in two situations. If the sensor 
event handler (e.g., onSensorChanged() in our example) 
does not start any worker thread to further handle the 
received sensor event, the propagation stops at the exit of 
this handler. Otherwise, the propagation has to continue 
until the sensor event handler returns and all worker 
threads terminate. Our taint propagation can thus identify 
the program data that depend on collected sensory data 
and trace their usages when an application executes. One 
thing that deserves explanation is that there might be cas-
es where an application starts worker threads in a special 
way, e.g., these threads are delayed in their running, peri-
odically started by a timer or kept long-running for han-
dling sensor events. Although we did not observe similar 
cases in our study, there is no restriction of using such 
multi-threading features in Android applications. When 
such cases occur, our taint propagation would theoretical-
ly have to continue until all worker threads end. However, 
in practice, this may compromise the tool’s usability since 
it can perform taint propagation for very long time and 
fail to report analysis results in a timely fashion. Therefore, 
for practicality, one may wish to set a timeout value for 
restricting such long taint propagation. This is an imple-
mentation issue and we do not elaborate further. 

4.4.3 Analyzing sensory data utilization 

With program data tainted with marks associated with 
sensory data, we can analyze how sensory data are used in 
an Android application and whether the uses are effective 
with respect to energy cost. 

Consider an Android application’s execution 𝑡𝑖 , in 
which the application visits a set of states 𝑆𝑡𝑖  by handling 
received events (user events, system events,9 or sensory 
events), and finally terminates with all its components 
destroyed. As mentioned earlier, when we fix an upper 
bound 𝑏 for the length of user interaction event sequences, 
the space of explored states 𝑆𝑏 for this application would 
be bounded (i.e., the total number of states in this space is 

                                                           
8 One can also track the usage of sensory data until an application exits or 
new sensory data arrive, but we did not observe any noticeable differ-
ence in our analysis results in experiments.   
9 In GreenDroid, system events are generated by monitoring API invoca-
tions. For example, a broadcast message event will be generated when 
GreenDroid observes the invocation of a message broadcast API. 

public void onSensorChanged(SensorEvent event){
if(event.sensor.getType() == Sensor.ACCELEROMETER){

boolean switchColor = isShuffled(event);
if(switchColor){

showMessage(“Device shuffled”);
if(getBackgroundColor() == RED){

setBackgroundColor(GREEN);
} else{

setBackgroundColor(RED);
} 

} 
}

}

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

public boolean isShuffled(SensorEvent event){
float[] values = event.values;
float x = values[0];
float y = values[1];
float z = values[2];
float g = SensorManager.GRAVITY_EARTH;
float accelerationSquareRoot = (x * x + y * y + z * z) / (g * g);
updateAccTextView(accelerationSquareRoot);
if(accelerationSquareRoot >= 2){

return true;
}
return false;

}      

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.  

Figure 7. Example code to demonstrate taint propagation 
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finite). As such, we are able to analyze these states to un-
derstand how sensory data are used, and compare their 
usages across different states. For comparison purposes, 
we propose an analysis metric called Data Utilization Coef-
ficient (DUC for short). It is defined by Equation (1):  

𝐷𝑈 (𝑠, 𝑑) =
𝑢𝑠𝑎 𝑒(𝑠, 𝑑)

𝑀𝑎𝑥𝑠′∈𝑆𝑏,𝑑′∈𝐷(𝑢𝑠𝑎 𝑒(𝑠
′, 𝑑′))

 (1) 

The utilization coefficient of sensory data 𝑑 at state 𝑠 is 
defined as the ratio between 𝑑’s usage at state 𝑠 and the 
maximal usage of any sensory data from our data pool 𝐷 
at any state in 𝑆𝑏. A lower DUC value indicates a lower 
utilization of sensory data. The usage of sensory data 𝑑 at 
state 𝑠 is further defined by the following equation: 

𝑢𝑠𝑎 𝑒(𝑠, 𝑑) = ∑ 𝑒𝑇𝑒𝑠𝑡(𝑖, 𝑑, 𝑠) × 𝑛𝑜 𝑛𝑠𝑡(𝑖)

𝑖∈𝐴𝑃𝐼 𝐶𝑎𝑙𝑙(𝑠,𝑑)

      (2) 

In this equation, 𝐴𝑃   𝑎𝑙𝑙(𝑠, 𝑑) is the set of API call in-
structions executed since sensory data 𝑑 are fed to the ap-
plication at state 𝑠 and until the data handling is finished. 
Function 𝑒𝑇𝑒𝑠𝑡(𝑖, 𝑑, 𝑠) is an effectiveness test to see wheth-
er the following two conditions both hold: (1) the API 
called by 𝑖 uses program data dependent on sensory data 
𝑑, and (2) the API’s execution at state 𝑠 produces percepti-
ble benefits to users. When both conditions hold, the effec-
tiveness test function returns 1. Otherwise, it returns 0. 
Function 𝑛𝑜 𝑛𝑠𝑡(𝑖)  returns the number of bytecode in-
structions executed by this API call. The rationale behind 
our usage metric is that it reflects how many times and to 
what extent sensory data are used by an application at 
certain states to benefit its users. This metric is designed 
based on our earlier study of 30 open-source Android ap-
plications that use sensors. These applications have called 
various Android or third-party APIs (e.g., Google Maps 
APIs) to use sensory data to support phone users with 
various functionalities.  

Now we explain how the effectiveness test function 
𝑒𝑇𝑒𝑠𝑡(𝑖, 𝑑, 𝑠)  is implemented. For its first condition, we 
check whether the concerned API is called with arguments 
(including its implicit “this” argument if applicable) hav-
ing the same taint mark as sensory data 𝑑. For its second 
condition, we take an outcome-based strategy. The basic 
idea is that the API called by instruction 𝑖 at state 𝑠 passes 
the effectiveness test if and only if its execution produces 
observable outcomes/benefits to users (e.g., updating visi-
ble GUIs or writing to file systems). Specifically, our strat-
egy works as follows: 
 If the API updates GUI elements, it passes the test as 

long as these GUI elements are visible at application 
state 𝑠, and fails otherwise. 

 If the API: (1) stores any data to file systems, databases 
or network, (2) updates a phone’s status (e.g., adjusting 

its screen brightness), or (3) passes any message for in-
ter- or intra-application communication (e.g., broad-
casting system-wide events), the API passes the test 
regardless of the application state. Here, we conserva-
tively assume that the stored data or passed messages 
will eventually produce perceptible benefits to users. 

 For all other cases, the API fails the test. 
As such, our analysis can identify those application 

states where sensory data are underutilized based on cal-
culated sensory data usage and cross-state comparison. 
We give one example for illustration. Consider the three 
states in the Osmdroid example in Figure 4(b). They are 
also listed in Table 6. Take the third state ⟨𝑠0, [𝑒1, 𝑒2, 𝑒3]⟩ for 
example. It means that: Osmdroid’s user starts the applica-
tion by launching MapActivity (𝑒1 ), enables its location 
tracking functionality (𝑒2), and switches the application to 
another activity (𝑒3). We analyze sensory data utilization 
for these three states. For ease of presentation, we explain 
at a source code level (actual analysis is conducted at a 
bytecode instruction level), and assume that: (1) each 
method is a pre-defined API, and (2) there are n bytecode 
instructions executed for each called API. Consider the 
second state, which is reached when the user switches to 
another activity from MapActivity directly. For this state, 
the location tracking functionality is not yet enabled. We 
observe that all external GPS data and internal program 
data depending on these GPS data are processed and used 
in turn by a set of APIs, namely, processLocation, putExtra, 
sendBroadcast, getExtra and updateMap. According to our 
usage metric, only the sendBroadcast API passes the effec-
tiveness test. The other four APIs fail the test because none 
of them can produce perceptible benefits to users (note 
that the map is still invisible now). According to Equation 
(2), the GPS data usage at this state is n. We can also calcu-
late that GPS data would have a maximal usage of 3n at 
the first state, where updateMap is used to render a visible 
map, sendBroadcast spreads the GPS data to the entire sys-
tem, and persistToDatabase method stores the GPS data to 

==============================================================
Sensory Data Underutilization

==============================================================
[Sensory data usage]: sendBroadcast, updateMap†

[Sensory data utilization coefficient:] 0.33

[Event handler calling trace]: 

MapActivity.onCreate (Line 4), MapActivity.onStart, MapActivity.onResume, 

GPSService.onCreate (Line 34), MapActivity.onPause, MapActivity.onStop,

gpsListener.onLocationChanged (Line 38), myReceiver.onReceive (Line 8)

Notes: (1) “†” highlights APIs that ineffectively utilize sensory data. (2) For

ease of understanding, we use class, variable and handler names to represent

event handlers, while in real reports the event handlers are represented using

object IDs and fully qualified Java method signatures. (3) Our tool will also

output source file names and source line numbers if they are available.  

Figure 8. Example energy problem report 

Table 6. GPS data utilization coefficients at three states 

Application state Method calls that consume GPS data GPS data usage GPS data utilization coefficient

𝑠0, 𝑒1, 𝑒2 processLocation, putExtra, sendBroadcast*, getExtra, updateMap*, persistToDatabase* 3n 3n / 3n = 1.00

𝑠0, [𝑒1, 𝑒3] processLocation, putExtra, sendBroadcast*, getExtra, updateMap† n n / 3n = 0.33

𝑠0, [𝑒1, 𝑒2, 𝑒3 ] processLocation, putExtra, sendBroadcast*, getExtra, updateMap†, persistToDatabase* 2n 2n / 3n = 0.66

 𝑒1: users start Osmdroid and the map activity launches; 𝑒2: users switch on the location tracking mode; 𝑒3: users switch from map activity to another activity.

 Method calls that can pass the effectiveness test are mar ed  ith the sym  l “*”; meth d calls  sed t   pdate invisi le     elements are mar ed  ith the sym  l “†” 

 Please note that only method calls marked with the symbol “*”  se  PS data and pr d ce perceptible benefits to Osmdroid users.  



0098-5589 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TSE.2014.2323982, IEEE Transactions on Software Engineering

database. Therefore, the GPS data utilization coefficient for 
the second state is 0.33 (= n / 3n). The coefficients for the 
other two states can be calculated similarly, as shown in 
Table 6. These results suggest that GPS data are clearly 
underutilized at the second state, as compared to the other 
two states. 

Our GreenDroid implementation ranks sensory data 
utilization coefficients for different application states such 
that energy problem reports can be prioritized and devel-
opers can then focus on the most serious energy problems. 
These reports contain two major pieces of information to 
ease energy problem diagnosis and fixing. First, 
GreenDroid reports how sensory data are consumed by 
different APIs at different application states, and high-
lights those APIs that ineffectively use sensory data. Sec-
ond, GreenDroid provides concrete event handler calling 
traces (corresponding to user interaction event sequences). 
For ease of understanding, we give an example report in 
Figure 8. It shows that GPS data are not well-utilized by 
Osmdroid at the second application state described in Ta-
ble 6. In this example, GreenDroid reports that: (1) GPS 
data are used to render an invisible map (i.e., updateMap 
API invocation), and (2) an event handler calling trace to 
reach the problematic application state. Such reported in-
formation are actionable to developers. By examining re-
ported event handler calling traces, developers will be able 
to construct concrete test cases (e.g., user interaction 
events) to reproduce the corresponding sensory data un-
derutilization scenario. For instance, the event handler 
calling trace in our example report corresponds to the fol-
lowing two user interaction events: (1) launching the 
MapActivity, and (2) switching away from MapActivty 
(see Section 2 for the calling order of activity lifecycle 
event handlers). Besides, by examining reported sensory 
data usages, especially ineffective data usages (e.g., up-
dateMap in this example), developers can understand why 
an application consumes more energy than necessary. 
Such energy problem reports provide much richer infor-
mation than pure complaints that can be commonly found 
in smartphone application forums [54]. Developers can 
thus pinpoint those problematic application states where 
energy is consumed unnecessarily due to ineffective use of 
sensory data. They can then take various actions for prob-
lem fixing, e.g., tuning down sensing rates or temporally 
disabling sensing as discussed in our earlier examples.  

Finally, for detected missing sensor or wake lock deac-
tivations, GreenDroid will also report similar information 
for energy problem diagnosis. Specifically, it will report: (1) 
those sensor listeners or wake locks that are forgotten to 
be properly unregistered or released before an application 
exits, and (2) event handler calling traces for reaching 
those problematic application states. 

5 EXPERIMENTAL EVALUATION 

We implemented our energy diagnosis approach as a pro-
totype tool named GreenDroid on top of JPF [31]. 
GreenDroid consists of 18,367 lines of Java code, including 
7,251 lines of code for energy diagnosis, and other 11,116 
lines of code for modeling Android APIs. We explain 
some details about GreenDroid’s implementation. First, 

modeling Android APIs is necessary for our diagnosis 
because Android applications depend on a proprietary set 
of library classes that are not available outside real devices 
or emulators [45]. These library classes are mostly built on 
native code. Due to JPF’s closed-world assumption [67], 
we have to model these library classes and their exposed 
APIs. Ignoring this modeling requirement would result in 
imprecision in the diagnosis results. For example, if 
GreenDroid does not properly model the Activity class’s 
startActivity API, it will not be able to analyze activity 
switches, which are very common in Android applica-
tions. However, Android exposes more than 8,000 public 
APIs to developers [24]. Fully modeling them is extremely 
labor-intensive and almost impossible for individual re-
searchers like us. As such, in our current implementation, 
we took a pragmatic approach by manually modeling a 
subset of APIs that are commonly called in Android appli-
cations. Modeling these APIs is already sufficient for car-
rying out our evaluation with real application subjects. To 
be specific, we have carefully modeled 76 APIs using JPF’s 
native peer and listener mechanisms [31], [41]. These APIs 
either frequently get invoked in our experimental applica-
tion subjects or have to be modeled as otherwise JPF will 
crash on their invocation (e.g., when they involve native 
calls). Modeling these APIs took us nearly three months. 
For remaining APIs, we provided stubs with simple logics. 
In these stubs, we basically ignored their corresponding 
APIs’ side effect if any, and made them return a value se-
lected from a reasonably bounded domain when neces-
sary. Second, besides tracking standard JPF program state 
information (e.g., call stack of each thread, heap and 
scheduling information) [53], GreenDroid also tracks the 
following four types of information for analysis: (1) a stack 
of active activities, their lifecycle status, and visibility of 
their containing GUI elements, (2) a list of running ser-
vices and their lifecycle status, (3) a list of registered 
broadcast receivers, and (4) a list of registered sensor lis-
teners and wake locks. More tool implementation details 
can be found in our technical report [41]. 

In this section, we evaluate GreenDroid by controlled 
experiments. We aim to answer the following four re-
search questions: 

 RQ4 (Effectiveness and efficiency): Can GreenDroid 
effectively diagnose and detect energy problems in real-world 
Android applications? What is its diagnosis overhead? 

 RQ5 (Necessity and usefulness of AEM model): Can 
GreenDroid correctly schedule event handlers for Android 
applications with our AEM model? Can GreenDroid still 
conduct an effective diagnosis if it randomly schedules event 
handlers (i.e., with our AEM model disabled)? 

 RQ6 (Impact of event sequence length limit): How does 
the length limit for generated user interaction event sequenc-
es affect the thoroughness of our energy diagnosis in terms of 
code coverage? 

 RQ7 (Comparison with existing resource leak detec-
tion work): How does GreenDroid compare to existing re-
source leak detection work in terms of finding real missing 
sensor or wake lock deactivation problems? 
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5.1 Experimental Setup 

We selected 13 open-source Android applications as our 
experimental subjects. Table 7 lists their basic information, 
which includes: (1) version number, (2) size of the selected 
version, (3) repository from which source code was ob-
tained, (4) application category, and (5) number of down-
loads. The first 11 applications were confirmed to have 
energy problems of our two identified patterns (Section 
3.3). We then use them to validate the effectiveness of our 
approach. We also selected two other subjects (Omnidroid 
and GPSLogger) from the open-source applications col-
lected in our empirical study. Neither of these two appli-
cations have confirmed energy problem reports. However, 
from their project development descriptions, we judged 
that they heavily use GPS sensors in a very energy-
consuming way and are susceptible to energy inefficiency 
problems. Thus we also selected them for our study to see 
whether our approach can identify energy optimization 
opportunities for them. We observe from Table 7 that our 
selected applications have been popularly downloaded 
(over 1 million downloads in total), and covered a variety 
of application categories (10 different categories). We ob-
tained these applications’ source code and compiled them 
on Android 2.3.3 for our experiments. We chose Android 
2.3.3 because it is one of the most widely adopted Android 
platforms and is compatible with most applications on the 
market [6]. We conducted our experiments on a dual-core 
machine with Intel Core i5 CPU @2.60GHz and 8GB RAM, 
running Windows 7 Professional SP1. In the following we 
elaborate on our experiments with respect to the four re-
search questions in turn. 

5.2 RQ4: Effectiveness and Efficiency 

To answer research question RQ4 about GreenDroid’s 
effectiveness and efficiency, we ran GreenDroid to diag-
nose each application listed in Table 7 and recorded its 
diagnosis overhead. In this set of experiments, we con-
trolled GreenDroid to generate sequences of at most six 

user interaction events for each application execution (not 
including the first events for “launching entry activity” 
when our analysis starts and the last events for “finishing 
active activities and services” when our analysis ends). 
This is for cost-effectiveness and it already enabled 
GreenDroid to explore quite a large number of application 
states to expose energy problems as we will show later. 
We examined top ranked diagnosis reports, especially 
those with highlighted ineffective API calls, to see whether 
they can locate real energy problems in these applications. 

We observed that GreenDroid successfully located 14 
real energy problems in these applications, as listed in 
Table 7. Four of them are caused by missing sensor deacti-
vation, four by missing wake lock deactivation, and the 
remaining six by sensory data underutilization. As men-
tioned earlier, the first 12 energy problems listed in Table 7 
have been confirmed by developers prior to our experi-
ments. In addition, GreenDroid successfully found two 
potential energy problems in Omnidroid and GPSLogger. 
These two problems were previously unknown. We sub-
mitted our bug reports to corresponding developers, and 
they were both confirmed. GPSLogger developers even 
invited us to join their team to help improve GPSLogger’s 
energy efficiency. Besides, as shown in Table 7, the severi-
ty levels of our detected 14 problems range from “medi-
um” to “critical”. This indicates that such problems can 
cause serious energy waste. Indeed, we found many nega-
tive comments complaining about battery drain issues 
from the bug tracking systems and Google Play store user 
review pages of the concerned applications (e.g., Geohash 
Droid, AndTweet and Zmanim). We discuss some of these 
energy problems in detail below. 

5.2.1 Missing sensor or wake lock deactivation 

Android API documentation recommends developers to 
unregister sensor listeners and release wake locks when 
they are no longer needed [5], [8]. However, we found that 
missing sensor or wake lock deactivation is common in 
Android applications. GreenDroid detected eight applica-

Table 7. Experimental subject information and detected energy problem 

DroidAR R-2041 18,106 Google Code Tools 5K ~ 10K Missing sensor deactivation (Medium3)

Recycle Locator R-68 3,241 Google Code Travel & Local 1K ~ 5K Missing sensor deactivation (Medium)

Ushahidi R-9d0aa75 10,186 GitHub Communication 10K ~ 50K Missing sensor deactivation (N/A)

AndTweet V-0.2.42 8,908 Google Code Social 10K ~ 50K Missing wake lock deactivation (Medium)

Ebookdroid R-137 14,351 Google Code Productivity 1M ~ 5M Missing wake lock deactivation (Medium)

BableSink R-12879a3 1,718 GitHub Library & Demo 1K ~ 5K Missing wake lock deactivation (N/A)

CWAC-Wakeful R-d984b89 896 GitHub Education 1K ~ 5K Missing wake lock deactivation (N/A)

Sofia Public Transport Nav.
R-114 1,443 Google Code Transportation 10K ~ 50K Sensory data underutilization (Critical)

R-115 1,427 Google Code Transportation 10K ~ 50K Missing sensor deactivation (Critical)

Osmdroid R-750 18,091 Google Code Travel & Local 10K ~ 50K Sensory data underutilization (Medium)

Zmanim R-322 4,893 Google Code Books & References 10K ~ 50K Sensory data underutilization (Critical)

Geohash Droid V-0.8.1-pre2 6,682 Google Code Entertainment 10K ~ 50K Sensory data underutilization (Medium)

Omnidroid R-863 12,427 Google Code Productivity 1K ~ 5K Sensory data underutilization (Critical)

GPSLogger R-15 659 Google Code Travel & Local 1K ~ 5K Sensory data underutilization (Medium)

Application Name Version Lines of code
Source code 

availability
Category Downloads

Detected energy problem 

(severity level)

1,2: Sym  l “R” stands f r “revisi n” and sym  l “V” stands f r “versi n”; 
3:  e   tained the pr  lem severities fr m c rresp ndin  applicati ns’     trac in  systems  “N/A” means that devel pers did not explicitly label problem severities.   
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tions suffering such energy problems from our 13 subjects. 
These problems happened because developers either for-
got to unregister sensor listeners or release wake locks, or 
performed these operations incorrectly. For example, the 
code snippets in Figure 9 demonstrate how Ushahidi de-
velopers wrongly unregistered a GPS listener. We observe 
in the buggy version that, developers registered a GPS 
listener gpsListener in the onCreate() handler of the 
CheckInMap activity (Lines 3–6), and then tried to un-
register the listener in the onDestroy() handler of 
CheckInMap (Lines 10–11). However, instead of passing 
previous registered gpsListener to the sensor listener un-
registration API removeUpdate(), developers wrongly 
created a new GPS listener instance and passed its refer-
ence to removeUpdate(). The consequence is that the pre-
viously registered sensor listener gpsListener was not 
properly unregistered.  

For performance considerations, the Android OS keeps 
an application process alive as long as possible, until the 
system runs low on resources (e.g., memory). According 
to this policy, even a dummy process that hosts no appli-
cation component is not guaranteed to be terminated in a 
timely fashion [7]. Therefore, in the buggy version, the 
gpsListener instance would remain in memory for a long 
time even if the activity it belongs to has been destroyed. 
The activity instance could also remain in memory after its 
onDestroy() handler is called. As a result, valuable battery 
energy can be wasted by unnecessary GPS sensing. Usha-
hidi’s developers later realized this problem from bug 

reports and fixed it. Figure 9 also gives the correct version 
for comparison. 

5.2.2 Sensory data underutilization 

GreenDroid also detected six applications suffering senso-
ry data underutilization problems out of our 13 subjects. 
Among these detected problems, three (Table 7) are critical 
ones that can cause massive energy waste. We discuss 
these six problems in detail below. 

Osmdroid. Osmdroid is a navigation application simi-
lar to Google Maps. After diagnosis, GreenDroid reported 
that Osmdroid’s location data utilization coefficient is no 
more than 0.2239 for 30.51% explored states, but close to 1 
for other states, as shown in Figure 10(a). This strongly 
suggests that Osmdroid poorly utilizes location data at 
certain states. We examined the reports generated by 
GreenDroid and quickly found that if users switch from 
MapActivity to other activities without enabling location 
tracking, location data would be used to render an invisi-
ble map (recall that GreenDroid can highlight ineffective 
API calls). This greatly wastes valuable battery energy as 
reported by users [51]. To fix this problem, developers 
later disabled GPS sensing if users leave MapActivity 
without the location tracking functionality enabled. Figure 
10(b) gives the new version’s location data utilization 
analysis result. We can observe that location data are now 
much better utilized with a utilization coefficient above 
0.5223.   

Zmanim. Zmanim is a location-aware application for 
reminding Jewish people about prayer time during the 
day (zmanim). The application generates zmanim accord-
ing to users’ locations and corresponding time zones. In-
terestingly, developers already realized that location sens-
ing could be energy-consuming, and they made the appli-
cation stop location sensing once its required locations are 
obtained. However, as Figure 10(c) shows, GreenDroid 
still reported that for 37.37 % explored states, Zmanim’s 
location data utilization coefficient is no more than 0.4502, 
but close to 1 for other states. This energy problem is simi-
lar to what we found in Osmdroid. If users switch from 
the location sensing activity to other activities before the 
required locations are successfully obtained, battery ener-
gy would keep being wasted to update invisible GUI ele-
ments. In scenarios where GPS signals are rather weak, 
users frequently complained that Zmanim caused huge 
battery drain [72]. We give an example of such complaints 
below. Similar to Osmdroid, Zmanim developers also later 
disabled location sensing in such problematic cases, and 
we give the new version’s location data utilization analy-
sis result in Figure 10(d) for comparison (much improved 
utilization). 

Zmanim Issue 56: “I should see GPS icon only until a location is

obtained. After that, GPS should be turned off. However, even if

turning off GPS once a fix is obtained, this issue remains as a bug,

since a user could hit home button before the fix is obtained,

therefore leaving GPS on. These bugs quickly kill my battery.”
 

/**buggy version of the CheckInMap class**/

1. public class CheckinMap extends MapActivity {

2.   public void onCreate(){
3.     MyGPSListener gpsListener = new MyGPSListener();
4.     LocationManager lm = getSystemService(LOCATION_SERVICE);
5.     //GPS listener registration
6.     lm.requestLocationUpdates(GPS, 0, 0, gpsListener);
7.   }  

8.   public void onDestroy() {
9.     //unregister GPS listener 

10.     getSystemService(LOCATION_SERVICE)
11.            .removeUpdates(new MyGPSListener());
12.   }

13.   //location listener class
14.   public class MyGPSListener implements LocationListener {

15.     public void onLocationChanged(Location loc) {
16.       //utilize location data
17.     }
18.   }
19. }

/**correct version of the CheckInMap class**/

20. public class CheckinMap extends MapActivity {

21. private MyGPSListener gpsListener;

22.   private LocationManager lm;

22.   public void onCreate(){
23. gpsListener = new MyGPSListener();
24.     lm = getSystemService(LOCATION_SERVICE);
25.     //GPS listener registration
26.     lm.requestLocationUpdates(GPS, 0, 0, gpsListener);
27.   }  

28.   public void onDestroy() {
29.     //unregister GPS listener 
30. lm.removeUpdates(gpsListener);
31.   }

32. }  

Figure 9. The energy problem in Ushahidi application 
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Notes: (1) In the above figures, the location utilization coefficient is accurate to four decimal places. (2) Two states with indistinguishable utilization

coefficients (i.e., cannot be distinguished by four decimal places) are shown in the same bar. (3) Utilization coefficients with very few occurrences (i.e.,

less than 5‰) are not shown in the figures for ease of presentation, so the percentages in each figure may not add up to 100%. (4) The total number of

states for each application does not equal the number of explored states reported later because the location sensing is not enabled in some explored states.
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(f) GPSLogger (R-15) Analysis Result
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(g) Geohash Droid (V-0.8.1-pre2) Analysis Result
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(h) Geohash Droid (R-80e5441d3e) Analysis Result

Location Data Utilization Coefficient (DUC)

0.5172 0.7586 0.9310 1.0000

  
  
 0

2
0

,0
0

0
4

0
,0

0
0

N
u

m
b

er
 o

f 
A

p
p

. 
S

ta
te

s

3,403

(5.72%)

38,130

(64.05%)

8,374

(14.07%)

9,625

(16.17%)

DUC
0 1...

(i) Sofia Public Transport Nav. (R-114) Analysis Result
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(j) Sofia Public Transport Nav. (R-156) Analysis Result
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(a) Osmdroid (R-750) Analysis Result
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(b) Osmdroid (R-751) Analysis Result
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(d) Zmanim (R-323) Analysis Result
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(e) Omnidroid (R-863) Analysis Result
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Figure 10. Sensory data utilization analysis results for six applications 
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Omnidroid. Omnidroid helps automate system func-
tionalities based on user contexts. For example, Omni-
droid can help users automatically send a reply message 
such as “busy in a meeting” when they receive a phone 
call during an important meeting. When Omnidroid runs, 
it maintains a background service to periodically check 
location updates. If any location update satisfies a pre-
specified condition, its corresponding action would be 
executed as a response. Our diagnosis results in Figure 
10(e) show that 18.2% explored states have a location data 
utilization coefficient of no more than 0.0904. We found 
that at these states, users have not specified any condition 
or chosen any action. In other words, location data are 
collected for no use except being stored to a database for 
logging purposes (this explains why the location data uti-
lization coefficient is not 0). Then why does this back-
ground service keep collecting location data? It could 
cause huge energy waste. We reported this problem (pre-
viously unknown) to Omnidroid developers, and suggest-
ed enabling location sensing only when there are condi-
tions/rules concerning user locations. We then received a 
prompt confirmation and developers marked our reported 
problem as “critical” [50]: 

Omnidroid Issue 179: “Completely true, and your suggestion is a

great idea and you're correct Omnidroid does suck up way more

energy than necessary as a result. I'd be happy to accept a patch in

this regard”.
 

GPSLogger. GPSLogger collects users’ GPS coordinates 
to help them tag photos or visualize their traces. Figure 
10(f) presents our diagnosis results for its GPS data utiliza-
tion. We found that for 42.80% explored states, GPS data 
have not even been utilized. The utilization coefficient is 0. 
For the next 28.94% states, the coefficient is also low at 
0.1333, while for other states, it is close to 1. We examined 
the diagnosis reports and found another new energy prob-
lem that has not yet been reported. Similar to Omnidroid, 
GPSLogger also maintains a background service to collect 
GPS data. It continually evaluates whether collected GPS 
data satisfy certain precision requirements. If yes, the data 
are processed and stored to a database, and GPSLogger 
would then update its GUI to notify users. Otherwise, the 
data are discarded. However, when GPS signals are weak, 
GPS sensors may keep collecting noisy data. These data 
mostly do not satisfy precision requirements and are actu-
ally discarded. This produces no benefits to users, and 
explains why GPS data have a very low utilization coeffi-
cient at some states. This problem can be common when 
users enter an area where the GPS reception is bad. We 
submitted a bug report to suggest temporarily slowing 
down or disabling location sensing when the application 
continuously finds its collected GPS data of low quality. 
Our bug report was confirmed by GPSLogger developers. 
They also invited us to help improve GPSLogger’s energy 
efficiency [30]. We will further discuss our patch later in 
Section 5.6. 

Geohash Droid. Geohash Droid is an entertainment 
application for adventure enthusiasts. It randomly picks 
up a location for adventure, and navigates its users to that 
location using GPS data. We diagnosed Geohash Droid 
and found that its utilization coefficient is no more than 
0.4673 for 27.80% explored states, as shown in Figure 10(g). 

We studied diagnosis reports and found that at these 
states, GPS data were used only to show the users’ current 
locations in an icon on the phone’s notification bar (a 
phone’s notification bar is a GUI element container that is 
outside an application’s normal GUI and is always visible). 
However, in other states, GPS data were also used to up-
date the navigation map as well as computing detailed 
travel information (e.g., distance to destination). This 
comparison shows that GPS data were not well utilized in 
those 27.80% explored states, and this could cause energy 
waste. After realizing this, Geohash Droid’s developers 
made a patch to slow down the application’s GPS sensing 
rate to every 30 seconds to save energy when GPS data are 
only used for updating the notification bar [25]. Figure 3 
shows their comment after patching, and both their own 
testing and user feedbacks confirmed that there is indeed a 
significant improvement in Geohash Droid’s energy effi-
ciency [25]. Besides, in later revisions to Geohash Droid, 
developers redesigned the application by completely re-
moving this notification icon. They chose to automatically 
switch off GPS updates when the navigation map and de-
tailed information screen become invisible (see revision 
80e5441d3e for details). We analyzed this new version and 
present the result in Figure 10(h) for comparison. The re-
sult shows that in 94.29% explored states, the GPS data are 
now effectively utilized. 

Sofia Public Transport Nav. Sofia Public Transport 
Nav uses its collected GPS data to locate the nearest bus 
stops for its users, and provides arrival time estimation for 
concerned buses by querying a remote server. GreenDroid 
diagnosed its GPS data utilization, and reported that GPS 
data were poorly utilized for 24.81% explored states, and 
for the next 52.38% states, the utilization coefficient was 
also below 0.4138, as shown in Figure 10(i). We examined 
diagnosis reports and confirmed this energy problem. In 
Sofia Public Transport Nav., GPS data are mainly used to 
update a map that shows nearby bus stops. However, for 
many states, the dialog box showing bus arrival time is at 
foreground,10 hiding the map that shows nearby bus stops. 
Then because users may keep refreshing the dialog box to 
check bus arrival time, GPS data during this period will be 
used mainly to update the map hidden by the dialog. This 
is a waste of energy. The application developers later 
found this problem, and disabled its GPS update for states 
where the bus arrival time estimation dialog is at fore-
ground. Interestingly, although developers closed the cor-
responding bug report [64] soon after creating this patch, 
they mistakenly introduced another missing sensor deac-
tivation problem. In later development and communica-
tions with users, they realized this new problem and even-
tually fixed it [65]. This story suggests that: (1) developers 
lack easy-to-use and effective tools to help detect energy 
problems in their applications, and (2) fixing sensory data 
underutilization problems is non-trivial and may instead 
introduce new energy problems. For comparison, we also 
analyzed the application after developers eventually fixed 
all energy problems including this new one. As the result 
in Figure 10(j) shows, there are now no application states 

                                                           
10 GreenDroid models pop-up windows like dialog boxes by this strategy: 
(1) If a pop-up window is being displayed, GreenDroid considers all GUI 
elements underneath invisible; (2) If a pop-up window is dismissed, 
GreenDroid considers the GUI elements underneath visible again. 
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whose GPS data utilization coefficient is significantly low-
er than others. 

From the above discussions, we can see how automated 
sensory data utilization analysis can help diagnose energy 
problems for Android applications. When developers find 
that sensory data are clearly underutilized at certain states 
of their applications, they can consider whether their ap-
plications can reach these problematic states frequently 
and stay there for long time (e.g., an activity can be left to 
background until users explicitly switch back to it). If yes, 
developers may have to tune down the concerned sensors’ 
sensing rates or even disable them, as otherwise energy 
cost can be very high, but produced benefits can be mar-
ginal instead. Besides, we also find that in large-scale ap-
plication subjects like Omnidroid and Zmanim, their sen-
sory data usage is very complex, involving hundreds of 
method/API calls. In such subjects, manually examining 
how sensory data are utilized can be extremely labor-
intensive and error-prone. This justifies the great need for 
an automated diagnosis tool like our GreenDroid to help 
locate potential energy problems caused by sensory data 
underutilization. To reduce developers’ efforts in reading 
diagnosis reports, GreenDroid prioritizes these reports 
according to their sensory data utilization coefficients, and 
highlights ineffective API calls (e.g., those for updating 
invisible GUIs). This can help developers quickly figure 
out the causes of some subtle energy wastes. 

5.2.3 Analysis overhead 

Table 8 presents GreenDroid’s diagnosis overhead. For 
each of our 13 subjects, it reports: (1) the number of appli-
cation states GreenDroid explored, (2) the average number 
of event handlers GreenDroid executed during each appli-
cation execution, including those handlers for system 
events,11 (3) diagnosis time, and (4) the amount of memory 
GreenDroid consumed. For each subject, we conducted 
experiments three times to obtain these results. The num-

                                                           
11 System events could result in several consecutive handler calls. For 
example, an activity-destroying event may trigger the concerned activi-
ty’s onPause(), onStop(), and onDestroy() handlers in turn. 

ber of application states explored and event handlers exe-
cuted in different runs remained the same. The diagnosis 
time and memory consumption slightly varied in different 
runs and Table 8 reports the averaged results.  

We observe that GreenDroid could quickly explore 
thousands of application states and perform energy ineffi-
ciency diagnosis. For example, for the two largest subjects 
Omnidroid (over 12K LOC) and DroidAR (over 18K LOC), 
GreenDroid explored over 50K states during its diagnosis 
and executed over 60 event handlers in each application 
execution (recall that GreenDroid executes each subject 
many times). It finished diagnosis within five minutes. 
The memory cost was less than 400 MB. Such overhead 
can be well supported by modern PCs, and compares fa-
vorably with state-of-the-art testing or debugging tech-
niques, which typically take hours to explore up to 100K 
states [61]. This suggests that GreenDroid is a practical 
tool for diagnosing energy problems in real-world An-
droid applications. 

5.3 RQ5: Necessity and Usefulness of AEM Model 

To answer research question RQ5 about the usefulness of 
our proposed AEM model, we conducted two comparison 
experiments. First, we ran GreenDroid to diagnose our 
experimental subjects with the AEM model disabled, as-
suming that event handlers can be randomly scheduled. 
We examined whether GreenDroid could still locate ener-
gy problems in such a setting. Second, to study whether 
the executions of our experimental subjects in GreenDroid 
(with AEM model enabled) resemble real executions, we 
instrumented all 149 event handlers defined in our largest 
subject DroidAR, and conducted the following experi-
ment. We randomly selected 50 execution traces of Droi-
dAR generated by GreenDroid. These executions on aver-
age involve 54 event handler calls (not necessarily dis-
tinct). We extracted from them corresponding user interac-
tion event sequences. We then ran DroidAR in the An-
droid emulator [4], which is included in the Android 
Software Development Kit, and manually provided the 
same user interactions (i.e., the same event sequences). We 
logged real event handler calling traces, and compared 

Table 8. Diagnosis overhead and random execution result 

DroidAR 91,170 60 284 233 67/100

Recycle Locator 114,709 44 46 162 4/100

Ushahidi 55,269 75 32 175 58/100

AndTweet 98,410 33 47 192 82/100

Ebookdroid 57,330 42 22 149 86/100

BableSink 42,987 63 15 154 17/100

CWAC-Wakeful 30,705 46 11 118 11/100

Sofia Public Transport Nav. 57,316 50 17 204 62/100

Osmdroid 120,189 43 159 575 79/100

Zmanim 54,270 34 114 237 31/100

Geohash Droid 144,710 60 185 229 71/100

Omnidroid 52,805 78 242 396 22/100

GPSLogger 58,824 28 41 153 9/100

Application name

Diagnosis information and overhead Random event handler

scheduling results 

(runtime exceptions)
Explored

states

Avg. number of handlers executed 

during each application execution

Diagnosis time

(seconds)

Memory consumption

(MB)
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them with those from GreenDroid. We discuss these ex-
perimental results below. 

First experiment. We observe that without AEM model 
(i.e., scheduling event handlers randomly), GreenDroid 
(actually JPF) already encountered great challenges in exe-
cuting Android applications, not to mention diagnosing 
any of their energy problems. The last column of Table 8 
lists these execution results. Among 100 application execu-
tions, we observed many runtime exceptions. For example, 
79 out of 100 executions of Osmdroid failed because of 
runtime exceptions, and these exceptions also crashed JPF. 
We manually studied these exceptions, and found that 
most of them arose from ignoring data flow dependencies 
between event handlers. For instance, it is quite often that 
developers initialize a GUI widget instance in an activity’s 
onCreate() handler, and later use this instance in other 
handlers. In random handler scheduling, if other handlers 
are wrongly scheduled before onCreate(), a null pointer 
exception may be thrown. Such exceptions cannot be easi-
ly addressed, and can cause termination of our energy 
diagnosis. For two small-sized subjects Recycle-locator 
and GPSLogger, fewer exceptions (4 and 9) were observed 
since their data flow dependencies between event han-
dlers are relatively simple. Still, these exceptions seriously 
prevented GreenDroid from diagnosing our experimental 
subjects. Besides, even for cases where no exception oc-
curred, we found that the diagnosis reports contain many 
meaningless handler calling traces that offer little infor-
mation to help developers pinpoint energy problems. This 
suggests that our AEM model is indeed necessary for an 
effective diagnosis of energy problems in Android appli-
cations. In addition, since our AEM model is essentially an 
abstraction of event handler scheduling policies for the 
Android platform, it can easily be adapted and used in 
other analysis techniques for Android applications. 

Second experiment. We observe that in 39 out of 50 ex-
ecutions, GreenDroid generated exactly the same handler 
calling traces as real executions. In the remaining 11 cases, 
GreenDroid failed to schedule event handlers in the same 

way as real executions did due to two major reasons. First, 
we did not consider dynamic GUI updates when imple-
menting GreenDroid. This could make GreenDroid gener-
ate some user interaction events that are impossible in an 
Android emulator (and also in real devices), because they 
are invalid due to runtime GUI updates (4 cases). Second, 
GreenDroid did not model concurrency adequately in its 
current implementation because JPF did not fully model 
Java concurrency programming constructs (e.g., ja-
va.util.concurrent.Executor was not modeled). This caused 
GreenDroid to fail to handle some system events (e.g., 
broadcast events) that were triggered in some worker 
threads (7 cases). Although these two problems did not 
cause noticeable consequences on the effectiveness of our 
diagnosis, we will still consider addressing them in future 
releases of our GreenDroid. This requires non-trivial engi-
neering effort. 

5.4 RQ6: Impact of Event Sequence Length Limit 

Our research question RQ6 studies how the thoroughness 
of our energy diagnosis can be affected by the length lim-
its on generated user interaction event sequences. To an-
swer this question, we applied GreenDroid to analyze 
each of our application subjects multiple times and stud-
ied how the code coverage would change accordingly. 
Specifically, GreenDroid analyzed each application nine 
times. For these nine runs, we gradually increased the 
length limit from zero to eight and measured the percent-
age of source code lines that were executed (i.e., statement 
coverage). We chose statement coverage as the metric for 
measuring the thoroughness of our diagnosis for two rea-
sons. First, to the best of our knowledge, we are not aware 
of any existing metrics that are designed for assessing the 
thoroughness of energy diagnosis. Second, statement cov-
erage has been widely used for measuring code coverage 
for general purposes because it strikes a good balance be-
tween utility and collection overheads [11], [52]. Table 9 
reports our study results and from them we obtain two 
major findings as discussed in the following. 

Table 9. Statement coverage with respect to different event sequence length limit settings 

DroidAR 6 0.541 2.28 11.99 11.99 12.54 12.54 12.54 12.542 12.54

Recycle Locator 3 1.23 16.11 23.76 28.17 32.18 36.96 36.96 36.96 36.96

Ushahidi 17 1.47 4.06 10.97 15.17 19.87 25.35 25.39 25.39 25.39

AndTweet 6 1.74 10.25 12.07 15.94 15.94 15.94 15.94 15.94 15.94

Ebookdroid 8 0.20 2.02 2.79 12.72 25.81 25.81 25.81 25.81 25.81

BableSink 1 2.68 24.39 30.33 30.38 30.38 30.38 30.38 30.38 30.38

CWAC-Wakeful 1 1.12 10.27 32.37 42.30 42.30 42.30 42.30 42.30 42.30

Sofia Public Transport Nav. 3 3.47 9.70 24.67 37.91 38.12 38.12 38.12 38.12 38.12

Osmdroid 8 1.01 11.36 18.09 18.93 24.68 30.15 30.15 30.15 30.15

Zmanim 3 1.72 11.81 27.71 27.96 28.04 28.08 28.08 28.08 28.08

Geohash Droid 9 2.96 10.31 19.87 22.94 25.58 25.62 25.62 25.62 25.62

Omnidroid 16 0.45 8.64 17.91 18.25 20.88 20.88 20.88 20.88 20.88

GPSLogger 1 4.86 14.11 44.31 46.13 46.13 46.13 46.13 46.13 46.13

Application names
# activity

components

Statement coverage (%)

Limit = 0 Limit = 1 Limit = 2 Limit = 3 Limit = 4 Limit = 5 Limit = 6 Limit = 7 Limit = 8

1: Statement coverage is not 0 because in our implementation we do not count “la nch the entry activity (when analysis starts ” and “finish all active activities and

services (when analysis ends ” when generating user interaction event sequences.
2: Underlined runs took more than one hour to finish. Memory consumption (maximum heap size set to 4GB) did not increase much when we relaxed the length limits.  
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Coverage saturation. We observe that for all applica-
tion subjects, the statement coverage increases quickly at 
the beginning with the growth in the length of generated 
event sequences. The coverage gradually saturates at cer-
tain points and stops increasing when the length limit fur-
ther grows. Take Osmdroid as an example.  Its statement 
coverage increases from 1.01% to 24.68% when the length 
limit grows from zero to four. When the length limit 
reaches five, the statement coverage saturates at 30.15%, 
with no further increase even if the length limit grows to a 
larger value. Other applications are similar. To understand 
why, we inspected all these applications. We found that 
many of these applications contain only a small number of 
activity components (with GUI). As listed in the second 
column of Table 9, 8 of our 13 applications contain no 
more than six activity components. Although the applica-
tions Ushahidi and Omnidroid contain relatively larger 
number of activity components, we found that many of 
these activity components are actually designed for dis-
playing information. Besides, for user friendliness, devel-
opers have made their applications’ GUIs intuitive. This 
means that users do not have to perform very long se-
quences of interactions from an application’s entry GUI to 
reach other GUIs for using their designed functionalities. 
This explains why the statement coverage measurement 
can quickly saturate for our studied applications.  

Difficulties in achieving high coverage. We also ob-
serve that even if our event sequence generation enumer-
ates all possible combinations of user interaction events, 
GreenDroid can still achieve only low statement coverage 
for some applications. For example, for DroidAR, 
AndTweet and Omnidroid, GreenDroid covers less than 
25% statements. We thus inspected these three applica-
tions and found three major difficulties in achieving high-
er code coverage. These findings can benefit related re-
search such as automated Android application testing [11], 
[34]. We discuss these findings in the following: 
 Sophisticated external stimulus. Achieving high code 

coverage may require sophisticated external stimulus 
for certain Android applications. For example, Omni-
droid registers a broadcast receiver with Android OS to 
monitor 26 different system broadcast events (e.g., 
“missing phone call” and “phone connected to a physi-
cal dock” broadcast events). A large proportion of its 
code is used for handling such broadcasted system 
events, while our GreenDroid currently cannot actively 
generate such events. This suggests that in order to 
cover such code, systematic simulation of external 
stimulus would be necessary.  

 Complex inputs and non-standard user interactions. 
Achieving high code coverage may require complex 
inputs and non-standard user interactions for certain 
Android applications. Take DroidAR, an augmented 
reality application on Android, for example. It presents 
its user a live view of real-world objects that are aug-
mented with various sensory inputs, and allows the us-
er to interact with these objects digitally. In many cases, 
DroidAR requires video input from phone cameras for 
recognizing and rendering augmented objects accord-
ingly. It contains two types of GUI elements: (1) stand-

ard GUI elements defined in Android libraries (e.g., 
buttons), and (2) augmented objects rendered by native 
graphics libraries. Both types of GUI elements can be 
dynamically updated. Therefore, covering a high pro-
portion of DroidAR code would require its user not on-
ly to interact with standard GUI elements (e.g., clicking 
buttons), but also to interact with the non-standard GUI 
elements (e.g., rotating augmented objects). However, 
our GreenDroid currently cannot support video inputs 
or user interactions with non-standard GUI elements. 
This explains why GreenDroid achieves low code cov-
erage when diagnosing DroidAR. 

 Special running environment. Achieving high code 
coverage may require special running environments for 
certain Android applications. For example, AndTweet 
is a light-weight Twitter chat client. Covering most of 
its code requires: (1) a valid Twitter account, (2) net-
work connectivity, and (3) meaningful data (e.g., tweets 
and followers) associated with this account. Failing to 
satisfy any of these requirements would make the ap-
plication run meaninglessly, leading to low code cover-
age. Our GreenDroid currently does not know how to 
satisfy such application-specific requirements and this 
deserves further research. 

From the above discussions, we can make two observa-
tions. First, similar to related studies [1], it is practical to 
limit the length of generated event sequences in program 
analysis due to the combinatorial explosion problem. In 
our case, setting the length limit to six is a cost-effective 
choice. This is because a larger length limit does not fur-
ther improve code coverage, but instead results in much 
longer diagnosis time (as in a magnitude of hours), as re-
ported by our experiments. In practice, such settings 
should be made on a case by case basis as different appli-
cations may have different characteristics. Therefore, tools 
like our GreenDroid should allow its users to customize 
their required depth of diagnosis and provide a time 
budget [45]. Second, we observed that for some applica-
tion subjects, GreenDroid located their energy problems 
even with low statement coverage. This can be explained. 
As discussed earlier (Sections 1 and 3), energy problems 
typically only occur at certain application states reached 
by handling corresponding user interactions. For example, 
the energy problem in Zmanim can be exposed by the fol-
lowing four steps: (1) switching on GPS, (2) configuring 
Zmanim to use current location, (3) starting Zmanim’s 
main activity, and (4) hitting the “Home” button when 
GPS is acquiring a location. Therefore, generating user 
interactions in a certain order is a prerequisite for expos-
ing such problems. GreenDroid essentially enumerates all 
possible combinations of different types of user interaction 
events (e.g., button click events and checkbox selection 
events) and provides appropriate event values when gen-
erating these events. This explains why it can systematical-
ly explore an application’s state space to locate potential 
energy problems. This also suggests that although state-
ment coverage can be used for measuring the code cover-
age achieved by a certain energy diagnosis approach, it 
may not be a good metric candidate for assessing the effec-
tiveness of such energy diagnosis. 
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5.5 RQ7: Comparison with Existing Resource Leak 
Detection Work 

Our work shares some similarity with existing resource 
leak detection work [10], [32], [66], [68] since sensor listen-
ers and wake locks are considered as valuable resources in 
Android OS and applications. Our last research question 
RQ7 studies how our GreenDroid compares to such work 
in terms of detecting real missing sensor or wake lock de-
activation problems. To answer this question, we chose 
Relda for comparison [32]. Relda is the latest resource leak 
detection work dedicated for Android applications [32]. It 
is a fully automated static analysis tool for Android appli-
cations and supports detecting leak of 65 types of system 
resources, which also include sensor listeners and wake 
locks as studied in our work. Therefore, it would be inter-
esting to know whether Relda can also effectively help 
detect missing sensor or wake lock deactivation problems 
in our studied Android application subjects. With the help 
of Relda’s authors, we conducted experiments using their 
original tool (not our implementation, which can other-
wise lead to bias in the comparison). We applied Relda to 
analyze all 13 application subjects listed in Table 7. It re-
ported 36 resource leak warnings, out of which 15 are re-
lated to sensors and wake locks, while the remaining 21 
are related to other seven types of resources (e.g., phone 
cameras), which are outside the scope of this article. We 
further invited Relda’s authors to manually validate these 
raw data and remove duplicate and false warnings as they 
did in their publication [32] (we did not do it by ourselves 
in order to avoid bias). Finally, they confirmed that Relda 
detected two real resource leak problems in DroidAR and 
one in Ebookdroid out of our 13 application subjects. By 
analyzing the experimental results, we obtained several 
findings as discussed below. 

First, the two problems Relda detected in DroidAR 
happened because developers forgot to unregister a sensor 
listener and to disable a phone vibrator after usage, re-
spectively. The other problem Relda detected in 
Ebookdroid happened because developers forgot to recy-
cle a velocity tracker (it tracks the velocity of touch events 
for detecting gestures like flinging) back to the Android 
OS after using it. From these results, we can see that Relda 
can indeed detect more types of resource leaks than 
GreenDroid since it has a much wider focus. However, 
two of the three detected real problems are not related to 
sensors or wake locks. Within the scope of this article, 
Relda actually detected only one real problem of our inter-
est (i.e., the missing sensor deactivation problem in Droi-
dAR). As a comparison, our GreenDroid detected eight 
missing sensor or wake lock deactivation problems in 
these 13 application subjects as we discussed earlier. All 
these eight problems (including the one detected by Relda) 
are real problems as confirmed by developers. 

Second, we carefully studied Relda to understand why 
it cannot effectively detect the other seven real missing 
sensor or wake lock deactivation problems that can be 
detected by GreenDroid in our studied Android applica-
tions. Based on our study results and our communications 
with Relda’s authors, we identified four major reasons: (1) 
Relda does not conduct intra-procedural flow analysis. To 
avoid false positives, which can be a major concern for 
static analysis, Relda does not report any resource leak 

problem as long as a concerned resource can possibly be 
released at any program path. Due to this conservative 
nature, Relda did not effectively detect missing wake lock 
deactivation problems in BabbleSink and AndTweet. For 
example, the wake lock acquired by AndTweet might be 
released in certain program paths, but such paths could 
only be executed in exceptional cases that are not feasible 
during normal running (see Section 3.3 for more details). 
As such, AndTweet can constantly drain a phone’s batter 
energy during its normal usage, but this problem cannot 
be reported by Relda. (2) Relda does not conduct point-to 
analysis. Thus it cannot figure out what object(s) a refer-
ence is pointing to, and this is a common limitation of stat-
ic analysis techniques without point-to analysis. Due to 
this reason, Relda did not effectively detect the missing 
sensor deactivation problem in Ushahidi, where its devel-
opers mistakenly passed a newly created GPS sensor lis-
tener to the unregistration API (Line 11 in Figure 9), in-
stead of passing the listener that has been registered earli-
er (Line 6 in Figure 9). (3) Relda does not properly model 
or consider event handler scheduling as we studied in this 
work. Thus it cannot handle message passing and receiv-
ing well. Due to this reason, it did not detect the missing 
wake lock deactivation problem in CWAC-Wakeful. The 
reason is that CWAC-Wakeful acquires a wake lock from 
the Android OS only when it receives a message that asks 
it to perform some long running task at background. (4) 
Relda did not detect missing sensor or wake lock deactiva-
tion problems in Recycle Locator, Sofia Public Transport 
Nav. and Ebookdroid due to its incomplete resource oper-
ation table. These applications use sensors or wake locks 
by calling compound APIs that wrap basic sensor listener 
registration/unregistration APIs or basic wake lock acqui-
sition/releasing APIs. For example, Sofia Public Transport 
Nav. calls Google Maps APIs to use a phone’s GPS sensor, 
but Google Maps APIs have wrapped GPS sensor listener 
registration/unregistration APIs such that the latter cannot 
be examined by Relda. Our GreenDroid does not have 
these discussed issues. It systematically executes an An-
droid application. Its dynamic analysis is naturally flow-
sensitive and does not need point-to analysis. Besides, it 
relies on our AEM model to ensure reasonable scheduling 
of event handlers so that it can handle messaging passing 
and receiving properly. Moreover, GreenDroid only fo-
cuses two types of resources, i.e., sensor listeners and 
wake locks, so that we could prepare a more complete 
operation table for them with affordable effort. This ex-
plains why Relda missed some missing sensor or wake 
lock deactivation problems but GreenDroid could still 
detect them. 

Third, although Relda can detect energy problems 
caused by missing sensor or wake lock deactivation as a 
form of resource leak, it cannot help diagnose energy 
problems caused by sensory data underutilization. These 
problems are more complicated as discussed throughout 
this article. Our GreenDroid supports automated analysis 
of sensory data utilization and can help developers diag-
nose energy problems caused by cost-ineffective use of 
sensory data. 

From the above discussions, we can observe that both 
Relda and GreenDroid have their own scopes and 
strengths. Relda can detect a wider range of resource leak 
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problems and some of them may lead to serious energy 
waste. On the other hand, GreenDroid’s scope is more 
focused (sensor and wake lock related energy problems) 
and its energy problem detection capability is satisfactory. 
In terms of detecting energy problems caused by missing 
sensor or wake lock deactivation, GreenDroid performs 
better than Relda. We did not compare GreenDroid to oth-
er resource leak detection work due to various reasons 
including tool availability and applicability (some work 
are for conventional Java programs, e.g., Torlak et al.’s 
work [66]). The above comparisons and discussions con-
firm that GreenDroid is useful and effective for diagnosing 
energy problems in Android applications, and its idea 
may also complement and contribute to existing resource 
leak detection work on the Android platform. 

5.6 Discussions 

Patching GPSLogger. As mentioned earlier, we were 
invited by GPSLogger developers to make a patch to im-
prove GPSLogger’s energy efficiency. To be realistic, we 
built this patch by following an accepted patch for fixing 
Geohash Droid’s energy problem [25]. Our patch slightly 
modifies GPSLogger’s GPS sensing part, aiming not to 
affect its functionalities. Specifically, the patched GPSLog-
ger would slow down its GPS sensing rate to every 30 sec-
onds when it finds that its collected GPS data remain at 
low quality (e.g., after five consecutive imprecise readings), 
and set the sensing rate immediately back to the original 
value when it finds that its GPS data have become precise 
again (e.g., after two consecutive precise readings). We 
submitted this patch to GPSLogger developers and it was 
recently accepted. We also helped release it online for trial 
downloads for interested users.12  So far, this patch has 
received more than 400 downloads. This indicates that 
developers indeed acknowledge and accept our efforts in 
helping defend their Android applications from energy 
inefficiency. 

Tool implementation. Our energy diagnosis approach 
is independent of its underlying program analysis frame-
work. Currently, we implemented it on top of JPF because 
JPF is a highly extensible Java program verification 
framework with internal support for dynamic tainting. 
However, analyzing Android applications using JPF is still 
challenging as discussed throughout this article. We have 
to carefully address the problems of event sequence gen-
eration and event handler scheduling, as well as Android 
library modeling. In particular, modeling Android librar-
ies is known to be a tedious and error-prone task [45]. This 
is why our current implementation only modeled a partial, 
but critical, set of library classes and concerned APIs. Ex-
tending our tool to support more Android APIs is possible, 
but would require more engineering effort, and our 
GreenDroid is evolving along this direction. Besides, in 
GreenDroid’s current implementation, all temporal rules 
in our AEM model have been translated into code for ease 
of use. We are considering building a more general execu-
tion engine that can take these rules as inputs to schedule 
Android event handlers reasonably. This would make our 
GreenDroid more extensible to new rules. To realize this, 
we need: (1) a new domain language to specify these rules, 

                                                           
12 https://code.google.com/p/gpslogger/downloads/list 

and (2) a mechanism that automatically interprets and 
enforces these rules at runtime. Moreover, we are also 
considering integrating our diagnosis approach into An-
droid framework by modifying the Dalvik virtual machine 
much the same as Enck et al. did [22]. This can bring two 
benefits. First, it enables real-time energy inefficiency di-
agnosis. Second, modeling Android libraries is no longer 
necessary, such that the imprecision caused by inadequate 
library modeling can also be alleviated or avoided. Lastly, 
GreenDroid can be designed to be interactive, providing 
its users visualizations of sensory data usage details. This 
would help developers quickly figure out the root causes 
for a wide range of domain-specific energy problems. 

Tainting quality. Our sensory data utilization analysis 
relies on dynamic tainting for tracking propagation of sen-
sory data. It is well known that designing precise dynamic 
tainting is challenging [62]. Researchers have found that 
ignoring control dependencies in taint propagation can 
cause undertainting (i.e., failing to taint some data derived 
from taint sources), but considering control dependencies 
can also cause overtainting (i.e., tainting some data that are 
not derived from taint sources) [37]. It is therefore sug-
gested that the tainting policy should be designed accord-
ing to its application scenarios [62]. In our case, we need to 
track propagation of sensory data and identify program 
data that are derived from such sensory data. For this 
purpose, we adapted TaintDroid’s tainting policy [22] and 
added a special rule for handling control dependencies 
(ignoring control dependencies is one of TaintDroid’s limi-
tations). While this rule may potentially result in over-
tainting in theory, we did not observe any evident impact 
on our sensory data utilization analysis results. We made 
some analysis of our studied application subjects. We 
found that unlike user privacy data (e.g., phone number) 
handled by TaintDroid, sensory data in our studied appli-
cations are typically updated frequently. These data can be 
quickly replaced with new data. Their consumption is 
thus short-term, implying that they are unlikely to affect a 
large volume of program data in Android applications. 
This explains why our control dependency handling does 
not introduce evident overtainting problems. 

Limitations. Our current GreenDroid implementation 
has some limitations. First, GreenDroid cannot generate 
complex inputs (e.g., video inputs or user gestures). Thus, 
there can be application states not reachable by 
GreenDroid. If any energy problem is associated with 
these states, GreenDroid would not be able to detect them. 
Second, GreenDroid’s event sequence generation belongs 
to the category of model-based approaches [34], [45], [69]. 
One common problem with these approaches is that they 
rely on a statically extracted model and lack runtime in-
formation. For example, GreenDroid relies on a GUI mod-
el extracted by statically analyzing an application’s layout 
configurations. It cannot cope with dynamic GUI updates 
(e.g., news reading applications can dynamically load a 
new list of items). Therefore, we found in our evaluation 
that GreenDroid sometimes generated infeasible user in-
teraction event sequences (e.g., a sequence containing a 
click event on a GUI element that has been removed). For 
our largest subject DroidAR, GreenDroid generated 
around 8% infeasible event sequences due to its inability 
to handle dynamic GUI updates. Third, GreenDroid can-
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not systematically simulate different sensory data as this 
requires a comprehensive characteristic study of real-
world sensory data. Currently, we randomly picked up 
mock sensory data from a pre-prepared data pool con-
trolled by different precision levels. It could be possible 
that the selection of sensory data has an impact on a pro-
gram’s control flow (e.g., an execution path that requires 
specific data values cannot be explored). Although we did 
not observe the above three issues affecting GreenDroid’s 
effectiveness in diagnosing our application subjects, we 
are investigating them and plan to come up with more 
complete solutions in future. For example, the second limi-
tation may be addressed by integrating GreenDroid’s en-
ergy inefficiency diagnosis into the Android framework. 
Then its event sequence generation no longer needs pre-
extracted GUI models for Android applications under di-
agnosis. Instead, one can analyze an application’s GUI 
layout at runtime and adapt automated testing tools like 
Robotium [61] for generating user interaction events. This 
limitation may also be addressed by adding event se-
quence feasibility validation to GreenDroid (e.g., using 
Jensen et al.’s work [34]). Then GreenDroid can first vali-
date the feasibility of its generated event sequences before 
presenting them to developers for reproducing its detect-
ed energy problems. We leave these potential improve-
ments to our future work. 

Alternative analysis approach. Our current sensory da-
ta utilization analysis is only one possible approach. It 
analyzes how many times and to what extent sensory data 
are utilized by an application at certain states. We believe 
that there can also be other good designs for effective 
analysis of sensory data utilization. We discuss one possi-
ble alternative here. For example, instead of accumulating 
sensory data consumptions (i.e., analyzing how many 
times sensory data are utilized; see Equation (2)) in the 
analysis, we can also consider that as long as sensory data 
are effectively utilized once, the battery energy for collect-
ing the data is well spent. Besides, when designing the 
“data usage” metric, we can also choose not to distinguish 
different APIs that utilize sensory data. Specifically, we 
can choose not to scale the usage metric value by the 
number of bytecode instructions executed during the in-
vocation of an API that utilizes sensory data (i.e., not ana-
lyzing to what extent the sensory data are utilized). Such a 
design may also help locate energy problems. For instance, 
although we cannot distinguish how many times sensory 
data are utilized in different application states, we can still 
identify application states that totally do not utilize senso-
ry data. In our experiments, we found that such “complete 
energy waste” cases indeed exist (i.e., GPSLogger’s energy 
problem). However, for most of our studied energy prob-
lems, the concerned applications do not totally discard 
collected sensory data. For example, Geohash Droid al-
ways uses location data to update a phone’s notification 
bar (see Figure 4(a)), but still its developers consider that if 
other remote listeners are not actively monitoring location 
updates, then only updating phone notification bar is a 
waste of valuable battery energy. In such cases, the alter-
native design might not be able to locate such energy 
problems. As a comparison, our approach can not only 
help locate application states that totally do not utilize 
sensory data, but also help locate those that do not utilize 

sensory data in a fully effective manner. Therefore, it can 
generally provide finer-grained information for energy 
diagnosis and optimization. Of course, our design allows 
GreenDroid to report more energy problems than the al-
ternative design. This is why we also propose a prioritiza-
tion strategy to help developers focus on the potentially 
most serious energy problems, i.e., those have the lowest 
data utilization coefficients. 

6 RELATED WORK 

Our GreenDroid work relates to several research topics, 
which include energy efficiency analysis, energy con-
sumption estimation, resource leak detection, and infor-
mation flow tracking. Some of them particularly focus on 
smartphone applications. In this section, we discuss repre-
sentative pieces of work in recent years. 

6.1 Energy Efficiency Analysis 

Smartphone applications’ energy efficiency is vital. In past 
several years, researchers have worked on this topic most-
ly from two perspectives. First, various design strategies 
have been proposed to reduce energy consumption for 
smartphone applications. For example, MAUI [18] helped 
offload “energy-consuming” tasks to resource-rich infra-
structures such as remote servers. EnTracked [38] and 
RAPS [57] adopted different heuristics to guide an appli-
cation to use GPS sensors in a smart way. Little Rock [58] 
suggested a dedicated low power processor for energy-
consuming sensing operations. SALSA [59] helped select 
optimal data links for saving energy in large data trans-
missions. Second, different techniques have been pro-
posed to diagnose energy problems in smartphone appli-
cations. Kim et al. proposed to use power signatures based 
on system hardware states to detect energy-greedy mal-
ware [36]. Pathak et al. conducted the first study of energy 
bugs in smartphone applications, and proposed to use 
reaching-definition dataflow analysis algorithms to detect 
no-sleep energy bugs, which can arise from mishandling 
of power control APIs in Android applications (e.g., wake 
lock acquisition/releasing APIs) [54], [56]. Zhang et al. 
proposed a taint-tracking technique for the Android plat-
form to detect energy wastes caused by unnecessary net-
work communications [70]. To help end users trouble-
shoot energy problems on their smartphones, Ma et al. 
built a tool to monitor smartphones’ resource usage be-
havior as well as system or user events (e.g., configuration 
changes in certain applications) [43]. Their tool can help 
identify triggering events that cause abnormally high en-
ergy consumption, and suggest corresponding repair solu-
tions (e.g., reverting configuration changes) to users. 

Our work shares a similar goal with these pieces of 
work, in particular, recent work in the second category 
discussed above [43], [56], [70]. Nevertheless, our work 
differs from them on several aspects. Regarding Pathak et 
al’s work [56], our work has two distinct differences. First, 
we found that detecting no-sleep bugs like missing wake 
lock deactivation is not difficult. One can always adapt 
existing resource leak detection (as we did in this article) 
or classic reaching-definition data flow analysis (as they 
did in their work) techniques for this purpose. However, 
our empirical study revealed more subtle energy problems 
caused by sensory data underutilization. As discussed 
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earlier, effectively detecting sensory data underutilization 
problems is non-trivial. It requires a systematic explora-
tion of an application’s state space and a precise analysis 
of sensory data utilization. Second, to conduct data flow 
analysis, Pathak et al. assumed that control flows between 
event handlers were already available from application 
developers. This is not a practical assumption for Android 
applications. Asking developers to manually derive pro-
gram control flow information is unrealistic, especially 
when applications contain hundreds of event handlers 
(e.g., our experimental subjects DroidAR and Omnidroid). 
As such, we chose to formulate handler scheduling poli-
cies extracted from Android specifications as an AEM 
model so that it can be reusable across different applica-
tions for correctly scheduling event handlers during pro-
gram analysis. Our experimental results have confirmed 
that this model is necessary and useful for effectively di-
agnosing energy problems in Android applications.  

Zhang et al.’s work also makes a similar observation to 
ours, i.e., using network data to update invisible GUIs can 
be an energy waste [70]. However, our work differs from 
theirs in three ways. First, we focus on energy problems 
caused by cost-ineffective uses of sensory data instead of 
network data, as our empirical study reveals that ineffec-
tive use of sensory data has often caused massive energy 
waste. Second, besides analyzing how sensory data are 
utilized by Android applications, we also studied ways of 
systematically generating event sequences to exercise an 
application, while their work may require extra testing 
effort for effective analysis (they did not study how to au-
tomate an application’s execution for analysis). Third, we 
proposed a state-based analysis of sensory data utilization. 
It effectively distinguishes different usage scenarios of 
sensory data, while Zhang et al.’s work only supports dis-
tinguishing two types of scenarios, i.e., network data used 
to update visible or invisible GUIs, respectively. As a re-
sult, our work can provide richer information to help di-
agnose energy problems with a wider scope.  

Our work also has a different objective from Ma et al.’s 
work [43]. Their work does not analyze an application’s 
program code. Instead, it monitors a device’s energy con-
sumption as well as system or user events to help identify 
those events that have likely caused abnormally high en-
ergy consumption. By reverting the effect of these events 
(e.g., uninstalling a suspicious application), users can po-
tentially suffer less battery drain. On the other hand, our 
work directly diagnoses causes of energy problems in an 
application’s program code and helps fix them by provid-
ing concrete problem-triggering conditions. 

Our preliminary version of this work (i.e., our earlier 
conference paper [42]) has shown that sensory data utiliza-
tion analysis can help locate energy problems caused by 
cost-ineffective use of sensory data. In this article, we en-
hanced our sensory data utilization analysis algorithm by 
addressing two issues in our earlier analysis discussed in 
the conference paper. First, our earlier analysis considers 
intermediate computational instructions as legitimate uti-
lization of sensory data, but these instructions’ execution 
may not produce perceptible benefits for users. For exam-
ple, consider the following two scenarios, which could 
occur in reality (although we did not see such examples in 
our experiments). In the first scenario, an application re-

ceives raw GPS data. It conducts non-trivial intermediate 
computation to process these data, but the processed data 
are not used afterwards. In the second scenario, GPS data 
are slightly processed before they are utilized to render 
visible GUI elements for user interaction. From this exam-
ple, we can see that the battery power is clearly wasted in 
the first scenario. However, our earlier analysis would 
consider that sensory data have been more effectively uti-
lized in the first scenario than the second due to the non-
trivial intermediate computation involved. Another issue 
is that our earlier analysis requires assigning a weighting 
function for each instruction that uses sensory data. The 
determination of such weighting functions may not be 
obvious for Android developers and can vary across dif-
ferent applications. Therefore, to address these two issues, 
we enhanced our analysis algorithm in this article by con-
sidering only those instructions that consume sensory data 
and produce observable benefits to users as legitimate 
utilization of sensory data. The new analysis algorithm 
can successfully identify the first scenario in the above 
example as a problematic scenario. Besides, since the algo-
rithm makes a binary decision when judging whether sen-
sory data are effectively used by an application, our analy-
sis no longer depends on weighting functions whose 
weighting factors may require manual customization ef-
fort. 

6.2 Energy Consumption Estimation 

One major reason why so many smartphone applications 
are not energy efficient is that developers lack viable tools 
to estimate energy consumption for their applications. 
Extensive research has been conducted to address this 
topic. PowerTutor [71] uses system-level power-
consumption models to estimate the energy consumed by 
major system components (e.g., display) during the execu-
tion of Android applications. Such models are a function 
of selected system features (e.g., CPU utilization) and ob-
tained by direct measurements during the controlling of 
the device’s power state. Sesame [21] shares the same goal 
as PowerTutor, but can perform energy estimation for 
much smaller time intervals (e.g., as small as 10ms). eProf 
[55] is another estimation tool. Instead of estimating ener-
gy consumption at a system level like PowerTutor and 
Sesame, eProf estimates energy consumption at an appli-
cation level by tracing system calls made by applications 
when they run on smartphones. WattsOn [46] further ex-
tends eProf’s idea by enabling developers to estimate their 
applications’ energy consumption on their workstations, 
rather than real smartphones. The most recent work is 
eLens [33]. It combines program analysis and per-
instruction energy modeling to enable much finer-grained 
energy consumption estimation. However, eLens assumes 
that smartphone manufacturers should provide platform-
dependent energy models for each instruction. This is not 
a common practice as both the hardware and software of a 
smartphone platform can evolve quickly. Requiring man-
ufacturers to provide a new set of instruction-level energy 
models for each platform update is impractical. Regarding 
this, eLens provides a hardware-based technical solution 
to help obtain such energy models. Still, power measure-
ment hardware may not generally be accessible for real-
world developers. 
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Typical scenarios for the techniques discussed above 
are to identify hotspots (software components that con-
sume the most energy) in smartphone applications, such 
that developers can perform energy consumption optimi-
zation. However, simply knowing the energy cost of a 
certain software component is not adequate for an effec-
tive optimization task. The missing key information is 
whether this energy consumption is necessary or not. 
Consider an application component that continually uses 
collected GPS data to render a map for navigation. This 
component can consume a lot of energy and thus be iden-
tified as a hotspot. However, although the energy cost can 
be high, this component is evitable in that it produces 
great benefits for its users by smart navigation. As such, 
developers may not have to optimize it. Based on this ob-
servation, our GreenDroid work helps diagnose whether 
certain energy consumed by sensing operations can pro-
duce corresponding benefits (i.e., high sensory data utili-
zation). This can help developers make wise decisions 
when they face the choice of whether or not to optimize 
energy consumption for certain application components. 
For example, if they find that at some states, sensing oper-
ations are performed frequently, but thus collected senso-
ry data are not effectively utilized, then they can consider 
optimizing such sensing mechanisms to save energy as 
Geohash Droid developers did [25]. 

6.3 Resource Leak Detection 

System resources are finite and usually valuable. Develop-
ers are required to release acquired resources in a timely 
fashion for their applications when these resources are no 
longer needed. However, tasks for realizing this require-
ment are often error-prone due to a variety of human mis-
takes. Empirical evidence shows that resource leaks com-
monly occur in practice [68]. To prevent resource leaks, 
researchers proposed language-level mechanisms and 
automated management techniques [20]. Various tools 
were also developed to detect resource leaks [10], [66]. For 
example, QVM [10] is a specialized runtime environment 
for detecting defects in Java programs. It monitors applica-
tion executions and checks for violations of resource safety 
policies. TRACKER [66] is an industrial-strength tool for 
finding resource leaks in Java programs. It conducts inter-
procedural static analysis to ensure no resource safety pol-
icy is violated on any execution path. Besides, Guo et al. 
recently collected a nearly complete table of system re-
sources in the Android framework that require explicit 
release operations after usage [32]. Similar to our work, 
they also adapted the general idea of resource safety poli-
cy checking discussed in QVM [10] and TRACKER [66] for 
problem detection. The major differences between our 
work and these pieces of work are two-fold. First, we pro-
posed to systematically explore an Android application’s 
state space for energy problem detection. This requires 
addressing technical challenges in generating user interac-
tion event sequences and scheduling event handlers. Sec-
ond, we also focused on studying more complex energy 
problems, i.e., sensory data underutilization. As discussed 
throughout this article, detecting these energy problems 
requires precise tracking of sensory data propagation and 
careful analysis of sensory data usage. Regarding this, we 

have proposed analysis algorithms and automated prob-
lem detection in this work, and they have not been cov-
ered by these pieces of existing work. 

6.4 Information Flow Tracking 

Dynamic information flow tracking (DFT for short) ob-
serves interesting data as they propagate in a program 
execution [35]. DFT has many useful applications. For ex-
ample, TaintCheck [48] uses DFT to protect commodity 
software from memory corruption attacks such as buffer 
overflows. It taints input data from untrustworthy sources 
and ensures that they are never used in a dangerous way. 
TaintDroid [22] prevents Android applications from leak-
ing users' private data. It tracks such data from privacy-
sensitive sources, and warns users when these data leave 
the system. LEAKPOINT [13] leverages DFT to pinpoint 
memory leaks in C and C++ programs. It taints dynamical-
ly allocated memory blocks and monitors them in case 
their release might be forgotten. Our GreenDroid work 
demonstrates another application of DFT. We showed that 
DFT can help track propagation of sensory data, such that 
their utilization analysis against energy consumption can 
be conducted to detect potential energy problems in 
smartphone applications. 

7 CONCLUDING REMARKS 

In this article, we presented an empirical study of real en-
ergy problems in 402 Android applications, and identified 
two types of coding phenomena that commonly cause 
energy waste: missing sensor or wake lock deactivation, 
and sensory data underutilization. Based on these find-
ings, we proposed an approach for automated energy 
problem diagnosis in Android applications. Our approach 
systematically explores an application’s state space, auto-
matically analyzes its sensory data utilization, and moni-
tors the usage of sensors and wake locks. It helps develop-
ers locate energy problems in their applications and gen-
erates actionable reports, which can greatly ease the task 
of reproducing energy problems as well as fixing them for 
energy optimization. We implemented our approach into 
a tool GreenDroid on top of JPF, and evaluated it using 13 
real-world popular Android applications. Our experi-
mental results confirmed the effectiveness and practical 
usefulness of GreenDroid.  

In future, we plan to study more Android applications 
and identify other common causes of energy problems. 
For example, we found from our study that a non-
negligible proportion (about 16%) of energy problems was 
caused by network issues (e.g., energy-inefficient data 
transmission). We are going to study these issues to fur-
ther extend our approach. By doing so, we expect that our 
research will help advance energy efficiency practices for a 
wider range of smartphone applications, and thus poten-
tially benefit millions of smartphone users. 
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