
	  
	  

Verifying Android Applications Using Java PathFinder 

Yepang Liu1, Chang Xu2, S.C. Cheung1 

1Department of Computer Science and Engineering 
The Hong Kong University of Science and Technology 

Clear Water Bay, Kowloon, Hong Kong 
{andrewust,scc}@cse.ust.hk 

2State Key Laboratory for Novel Software Technology 
Department of Computer Science and Technology 

The Hong Kong University of Science and Technology 
Clear Water Bay, Kowloon, Hong Kong 

changxu@nju.edu.cn 

 

 
Technical Report 

September 17, 2012 

 

Abstract: Providing verification support for Android programs can benefit millions of 
Android application developers. This technical report describes how we extend Java 
PathFinder (or JPF for short), a framework for verifying general Java byte-code programs, 
to support Android programs. We mainly address two major technical issues. First, we 
derive an event handler scheduling model from Android specifications, and leverage this 
model to guide JPF to realistically execute Android applications in its Java virtual 
machine. Second, we identify a critical set of Android APIs that rely on Android system 
level functionalities or native libraries whose implementation are platform-specific. We 
model these APIs using JPF’s listener and native peer mechanisms such that their side 
effects would not be ignored during an analysis. Our preliminary results confirmed that 
we can enable JPF to verify Android applications and find real defects after properly 
addressing these two major technical issues. 

 

Keywords: Android Applications, Program Analysis, Model Checking, Java PathFinder 

 

 

  



	  
	  

 

Table of Contents 

1. Introduction ........................................................................................................................................... 1 
2. Background ........................................................................................................................................... 2 

2.1 Android Applications .................................................................................................................... 2 
2.2 Java PathFinder ............................................................................................................................. 4 

2.2.1 JPF Listeners ......................................................................................................................... 4 
2.2.2 JPF Native Peers ................................................................................................................... 5 

3. Event Handler Scheduling Model for JPF ............................................................................................ 6 
3.1 EHS Model .................................................................................................................................... 6 
3.2 Runtime Enforcement of EHS Model ........................................................................................... 8 

4. Android API Modeling and Abstraction ............................................................................................... 9 
4.1 Activity and Service Management .............................................................................................. 10 
4.2 Broadcast Receiver Management ................................................................................................ 11 
4.3 GUI Event Listener Management ............................................................................................... 12 

5. Preliminaries Experimental Results .................................................................................................... 13 
5.1 Experimental Setup and Design .................................................................................................. 13 
5.2 Experimental Results .................................................................................................................. 14 
5.3 Discussion ................................................................................................................................... 15 

6. Conclusion .......................................................................................................................................... 15 
Appendix A. EHS Model Temporal Rule Collection ................................................................... 17 
Appendix B. The Collection of Modeled Android APIs .............................................................. 20 
 
  



1 
	  

1. Introduction 
Increasing market penetration of smartphones fosters the proliferation various mobile applications. As 

of June 2012, over 500,000 applications available on Google Play Store have received 20 billions of 

downloads [1]. Users rely on such applications for different purposes such daily task assistance [4], 

entertainment [2], socializing [9] or even financial management [10]. As such, the software quality of 

these applications is of vital importance. Developers should extensively test their applications before 

shipping them. However, the reality is not optimistic. Many applications suffer different kinds of defects. 

A notorious example is that Android SMS application intermittently sends meaningless short messages to 

recipients randomly picked in the users’ phone book [3]. There are two major reasons why Android 

applications commonly suffer different defects. First, Android applications are typically developed by 

small teams without dedicated quality assurance. It is not realistic for developers to perform a thorough 

testing of their applications on different devices. In fact, many Android applications such as K-9 Mail 

[17], a popular email application with millions of downloads, do not even have a well-designed test suite. 

Second, unlike their desktop counterparts, the history of Android applications is relatively short. There 

are not many mature industrial-strength tools designed for assuring the quality of Android applications. 

Although existing testing frameworks such as Robotium [20] can help developers write automatic black-

box test cases, it still requires non-trivial efforts to write test cases that can achieve high statement or path 

coverage [18]. 

For conventional programs (e.g., Java programs), there are quite a few mature, free, and easy-to-use 

tools or analysis frameworks to help developers diagnose defects in their programs. For example, 

FindBugs [11] leverages static analysis to detect various bugs (e.g., null pointer exceptions) in Java code. 

Java PathFinder [22] (or JPF for short) can help model check a Java program to prove the absence of a 

certain type of errors. However, neither FindBugs nor JPF has a good support for Android applications1. 

In this report, we aim to discuss our attempt to enable JPF to analyze Android applications. 

Extending JPF to support analyzing Android applications is a difficult task. Researchers from the 

“Google Summer of Code” program also aim at the same goal, but have not been too successful over the 

past several years [16]. Specifically, there are two major challenges to address before one can use JPF to 

analyze an Android application. The challenges are: 

• Challenge 1. Android applications follow an event-driven programming paradigm, which hides an 

application’s program control flows in the canned machinery of the Android framework. 

Developers are only exposed with a set of loosely coupled event handlers for them to specify an 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 We have seen some efforts to enable FindBugs to analyze Android application. A third-party plugin can be found at 
http://code.google.com/p/findbugs-for-android/. 
2 In order to be able to backtrack to a previous program state, JPF sacrifices the capability of executing Java libraries that rely on 



2 
	  

application’s behavior. At runtime, these event handlers are implicitly called according to Android 

specifications. For example, the onStart() handler of an activity component is called after its 

onCreate() handler, but this calling order is never explicitly specified in the program code. This 

causes trouble for JPF as it is designed to verify conventional Java programs where program 

control flows are explicitly stated.  

• Challenge 2. Some Android APIs rely on the Android system functionalities or native libraries 

whose implementations are platform-specific (e.g., thread manipulation APIs and GUI related 

APIs). System level functionalities or native libraries are typically implemented in C or C++, and 

thus their code is not suitable to be executed in JPF’s Java virtual machine. If we simply choose to 

ignore their side effects, JPF may encounter various unexpected problems when it analyzes an 

Android application. 

  To address the first challenge, we need to derive an event handler scheduling model (or EHS model 

for short) from the Android specifications. This model captures application generic temporal rules that 

specify the calling relationships between event handlers. These rules should be enforced at runtime to 

guide JPF to call event handlers at the appropriate time. To address the second challenge, we need to 

identify those Android APIs that rely on native libraries or system functionalities, and properly model 

their side effects so that JPF can make the right actions when those APIs are called. By addressing these 

two challenges, JPF would be able to help model check Android applications. 

The rest of this report is organized as follows. Section 2 gives the background of Android applications, 

and JPF. Section 3 introduces our EHS model and discusses how to enforce this model at runtime. Section 

4 discusses the modeling of some critical Android APIs. Section 5 presents preliminary experimental 

results showing that our extension can successfully enable JPF to verify Android applications. Finally, 

Section 6 concludes this report. 

2. Background 
In this section, we introduce the background of Android applications, and Java PathFinder. 

2.1 Android Applications 
Android [1] is the most popular, open-source, Linux-based smartphone platform. Android applications 

are written in Java programming language with special enforcements. The applications will be first 

compiled into Java byte codes. Then the Java Virtual Machine-compatible .class files will be converted to 

Davik Virtual Machine-compatible .dex files, which can be directly executed on real devices. Typically, 

an Android application contains the following four types of components: 



3 
	  

• Activity. Activities are the only type of components that contain graphical interfaces to display 

information and interact with users. An application may comprise multiple activities that work 

together to provide a cohesive user experience. An activity can be launched from other activity or 

service components. 

• Service. Services are components that run in the background for conducting long-running tasks 

(e.g., sensor reading or data synchronization etc.). Other components, typically activities, can 

start and interact with services. 

• Broadcast receiver. Broadcast receivers define how an application responds to system-wide 

broadcast messages sent from other components, applications or the Android system. It can be 

statically registered in an application’s configuration file (e.g., AndroidManifest.xml), or 

dynamically registered in an activity or service component at runtime.  

• Content provider. Content providers manage shared application data persisted in file systems, 

databases or network locations.  They provide an interface for other components or applications 

to query or modify these data.  

Each application component has its own lifecycle defining how it is created, used, and destroyed. For 

example, Figure 1 shows the entire lifecycle of an activity component. An activity’s lifetime starts with a 

call to its onCreate() handler, and ends with a call to its onDestroy() handler. An activity’s foreground 

lifetime starts after a call to its onResume() handler, and lasts until its onPause() handler is called when 

another activity comes to the foreground. In the foreground, an activity can interact with its user. When it 

goes to the background and becomes invisible, its onStop() handler would be called. When users navigate 

back to a paused or stopped activity, the activity’s onResume() or onRestart() handler would be called 

onCreate()

onStart()

onResume()

Activity	  in	  
foreground	  

onPause()

onStop()

onDestroy()

Activity	  leaves	  foreground

Activity	  in	  background	  (invisible)

Activity	  launched

Activity	  is	  finishing	  or	  being	  destroyed

User	  returns	  
to	  the	  activity

onRestart()

User	  navigates	  
to	  the	  activity

App	  process	  
killed

Apps	  with	  higher	  
priority	  need	  memory

User	  navigates	  to	  
the	  activity

	  
Figure 1. Activity lifecycle 

	  



4 
	  

correspondingly, and the activity would then come to the foreground again. In exceptional cases, a paused 

or stopped activity may be killed for releasing memory to other applications with higher priorities. 

2.2 Java PathFinder 
Java PathFinder [15] (or JPF for short) is a highly customizable execution environment designed for 

verifying Java byte-code programs. As shown in Figure 2, JPF takes as input the byte codes of the system 

under analysis, and a set of configurations specifying the properties to check. JPF systematically analyzes 

the target system starting from an entry point (e.g., the main function of a system), and checks for 

violations of the specified properties. During the analysis process, JPF can identify the program points 

where the execution can proceed on different program paths. In theory, JPF would explore all such paths 

for verification purposes (we may also call this the model checking functionality of JPF). However, due 

to combinatorial explosion, the number of all paths can be unbounded, which is known as the “state 

explosion problem” in software model checking. JPF deals with this problem using state matching: when 

it reaches a program point where it can choose to proceed differently (e.g., an if-else branch depending on 

the value of a random variable), it would check whether similar program states have been explored. If yes, 

it would abandon the corresponding choice (i.e., stop exploring a program path), and backtrack to the 

previous point where it has unexplored choices2. By doing so, JPF model checks a target system and helps 

detect all defects that violate the specified properties. 

JPF is highly flexible and provides many extension points, of which we are going to leverage two 

important ones to enable JPF to verify Android applications. They are listeners and native peers. We 

introduce them in Section 2.2.1 and Section 2.2.2, respectively.  

2.2.1 JPF Listeners 
JPF listeners provide a mechanism to monitor and interact with JPF’s internal executions. Figure 3 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 In order to be able to backtrack to a previous program state, JPF sacrifices the capability of executing Java libraries that rely on 
native code. This is because native code such as system calls for file writing cannot be easily reverted.  

*.class

Java	  PathFinder

System	  under	  analysis

*.jpf

JPF	  Configurations
(properties	  to	  verify)

report

Verification	  results

	  

Figure 2. JPF basics	  



5 
	  

illustrates the key concept of the listener mechanism. The whole JPF framework runs inside the host JVM 

(i.e., the standard JVM on the host machine). At the heart of JPF is a specialized Java virtual machine for 

executing the byte codes of the target programs. Similar to plugins, JPF listeners can be dynamically 

configured at runtime and also run at the host JVM level. When there are special events occurred in JPF’s 

JVM (e.g., a certain API is called), the configured listeners will be notified, and the actions defined in the 

listeners will be executed by the host JVM. As such, listeners can help monitor all execution events inside 

the JPF’s JVM. For example, the following two methods of the ListenerAdapter class are commonly 

overridden. 

− public	  void	  executeInstruction(JVM	  vm)	  

− public	  void	  instructionExecuted(JVM	  vm) 

The first method will be invoked right before JPF’s JVM executes a byte code instruction. The second 

method will be invoked right after JPF’s JVM executes a byte code instruction. By overriding them, one 

can gain control over the execution of every single byte code instruction, and perform many analysis tasks. 

For instance, one can check whether an object reference returned from an “areturn” byte code instruction 

refers to a null object. This would help trace the causes of null pointer exceptions.    

2.2.2 JPF Native Peers 

Each Java virtual machine that conforms to the standard JVM specifications [21] supports interfacing 

certain functionalities (e.g., I/O and GUI) to the native OS level (i.e., Java Native Interface). Similarly, 

JPF also supports delegating the execution of some methods to the host VM level, and this mechanism is 

called “Model Java Interface” (or MJI for short). The key concept of MJI is illustrated in Figure 4. JPF 

intercepts native methods and the system level methods of some stand library classes, and delegates their 

execution to the host JVM. The host JVM executes these methods’ native peers such that some critical 

side effects of these methods would not be ignored by JPF.      

JPF

JVM

Listeners

Executed	  by	  host	  JVM

Executed	  by	  JPF

System	  under	  test

VM	  event	  notification

	  
Figure 3. JPF listener mechanism 

	  



6 
	  

We note that modeling the behavior of library classes (or methods) is a labor-intensive task. For 

example, completely modeling Android APIs that rely on native library requires enormous engineering 

efforts, which is typically unrealistic for individual researchers. To cope with this issue, one can choose to 

ignore the side effects of some methods if these effects are not relevant for the verification target. In 

addition to saving manual modeling efforts, this will also reduce the state space that JPF needs to explore. 

3. Event Handler Scheduling Model for JPF 
An Android application starts with its main activity, and ends after all its components are destroyed. It 

keeps handling received events by calling their handlers according to Android specifications. Each call to 

an event handler may change the application’s state by modifying its components’ local and global 

program data. To realistically execute Android applications in JPF’s JVM, we need an event handler 

scheduling model (or EHS model ) derived from Android specifications, and leverage this model to guide 

runtime scheduling of event handlers. In this section, we are going to discuss our EHS model, and how to 

enforce this model at runtime (i.e., when JPF analyzes an application). 

3.1 EHS Model 
Our EHS model is a collection of temporal rules, specifying the calling relationships between event 

handlers. They are generic to all Android applications and should be enforced at runtime. Formally, we 

define our EHS model as follows (unary temporal connective G means “always”): 

𝐺𝐴𝐸𝑀 ≔ &  𝑅)
𝑖  

Each temporal rule is expressed in the following form: 

𝑅" ≔  [𝜓],[𝜙]⟹ 𝜆  
In a rule Ri, ψ and λ are two temporal formulae expressed in linear-time temporal logic, and refer to 

the past and future, respectively. ϕ is a propositional logic formula referring to the present. ψ describes 

native String foo (int i, String s);

JPFJVM

“Model”	  method

Host	  JVM

public static 
int foo__ILjava_lang_String__2 (MJIEnv env,int objRef,

int i, int sRef){
int ref = env.newString(“hello world”);
return ref;

}

“NativePeer”	  method

	  
Figure 4. JPF MJI mechanism	  



7 
	  

what has happened in an execution, ϕ evaluates the current situation (what event is received), and λ 

describes what should be done in the future. Then the whole rule can be interpreted as: 

If both ψ and ϕ hold, λ should be executed next. 

We list some representative rules in the following, and Appendix A gives the entire collection of the 

temporal rules3. Propositional connectives ˄, ⇒, and ¬ in these example rules follow their traditional 

interpretations, and temporal connectives are explained in Table 1 (including those temporal connective 

used in the rules in Appendix A). Unary temporal connective X means “next”, and its past time analogue 

X-1 means “previously”. Binary temporal connective Ss means “strong since”. Specifically, a temporal 

formula “F1 Ss F2” means that F2 held at some time in the past, and since then F1 always holds. 

• Temporal Rule 1: When to call the lifecycle event handler act.onStart()? 

o 𝑿!𝟏  𝑎𝑐𝑡. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() ,    ¬𝐴𝐶𝑇_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡() 

• Temporal Rule 2: When to call a button-click event handler listener.onClick()? 

o (¬𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒()  𝑺𝒔  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒()) ∧

(¬𝑏𝑡𝑛. 𝑟𝑒𝑔(𝑛𝑢𝑙𝑙)  𝑺𝒔  𝑏𝑡𝑛. 𝑟𝑒𝑔(𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟)) , 𝐵𝑇𝑁_𝐶𝐿𝐼𝐶𝐾_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑜n𝐶𝑙𝑖𝑐𝑘() 

• Temporal Rule 3: When to call a message event handler rcv.onReceive()? (Dynamic registration) 

o ¬rcv.𝑢𝑛𝑟𝑒𝑔()    𝑺𝒔    𝑟cv. 𝑟𝑒𝑔() ,    𝑀𝑆𝐺_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑟cv. 𝑜𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒() 

• Temporal Rule 4: When to call a message event handler rcv.onReceive()? (static registration) 
o 𝑇𝑟𝑢𝑒 , [𝑀𝑆𝐺_𝐸𝑉𝐸𝑁𝑇] ⟹ 𝑿  𝑟cv. 𝑜𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒() 

The first example rule states that the onStart() handler should be called after the onCreate() handler 

completes as long as the concerned activity does not finish. The second rule requires a button-click event 

handler to be called if: (1) the button is clicked, (2) its enclosing activity is in the foreground (i.e., the 

activity’s onPause() handler has not been called since the last call to onResume() handler), and (3) its 

click event listener is properly registered. The third rule disenables the call to a message event handler 

before its registration and after its unregistration. The last rule requires that a static message event handler 

should be called upon any interested broadcast message. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 We do not claim for the completeness of our EHS model due to the complexity of Android specifications. Its 
current version already suffices to helping verify quite a few real-world Android applications, and it is essentially 
extensive. We are on the way to improve this model. 

Table 1. Interpretation of temporal connectives 

Temporal Connective Type Interpretation

𝐺 Unary connective Always

𝑋 Unary connective Next

𝑋#$ Unary connective Previously

𝑆& Binary connective Strong since
	  



8 
	  

3.2 Runtime Enforcement of EHS Model 
We in this subsection discuss how to enforce the EHS model during the verification process of an 

Android application. Since the EHS model is for scheduling event handlers, in this subsection we also 

cover the design details of our main scheduler, which is the analysis entry point for JPF. 

The temporal rules in our EHS model are expressed in an implementation-oriented manner. They can 

be directly converted to a decision procedure. The decision procedure helps the main scheduler decide 

which event handler to be called next according to the application’s execution history and its newly 

received events. The events come from two sources: (1) the GUI events and the main activity’s start event 

are generated by the main scheduler; (2) other events (e.g., the event to start a service) are monitored 

during the application’s execution (by the listener mechanism, see Section 4). The main scheduler thus 

should be sensitive to an application’s execution history. Particularly, in our design, the main scheduler 

tracks the following major information: 

• A stack of active activities. The main scheduler maintains active activities in a stack. Each active 

activity is associated with a collection of GUI event listeners registered for corresponding GUI 

elements in this activity (see Section 0 for how we build this association).  

• A list of running services. Running services are maintained is a list. Particularly, each service 

launched by the binding mechanism4 is associated with a collection of application components 

that are connected with it. 

• A list of registered broadcast receivers. The main scheduler also tracks broadcast receivers. 

Each registered broadcast receiver (we consider that a static broadcast receiver is always 

registered) is associated with a filter specifying its interested message types and permission (a 

message sender needs to know the permission of a receiver so that it can successfully send a 

message to this receiver). 

The scheduler serves as the analysis entry point for JPF. Figure 5 shows the pseudo code of the main 

function of our scheduler. It starts the application by launching its main activity (can be learned from the 

AndroidManifest.xml file). After that it enters a loop. In each iteration, the scheduler picks up the activity 

at the top of the activity stack. If this activity is ready for user interaction, the main scheduler will 

“randomly5” generate one possible GUI event (recall that each activity is associated with a collection of 

GUI event listeners, and the activity GUI layout can be learned by analyzing the corresponding 

configuration file), and query the decision procedure whether the GUI event’s handler should be called 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 A service component can be launched via the normal starting mechanism (i.e., by calling Context.startService()) or the binding 
mechanism (i.e., by calling Context.bindService()). The two mechanisms lead to different life cycles. See Android service 
component reference [6] for details. 
5 The random number can be generated using JPF’s Verify.random(int n) method. JPF will systematically explore all possible 
choices from 0 to n-1 if JPF’s configuration parameter cg.enumerate_random is set to true. 



9 
	  

next. If yes, it will call the handler using Java reflection. If the stack top activity is not ready for user 

interaction, the main scheduler will query the decision procedure to determine which life cycle handler of 

this activity should be called next, and then call the corresponding handler. The loop will terminate when 

a certain criterion is satisfied. This stopping criterion can be designed very flexibly. For example, we can 

stop the loop if any of the following two conditions are satisfied: (1) the activity stack becomes empty, (2) 

no more user interaction events are allowed to be generated6. After the loop stops, the main scheduler will 

stop all active activities and running services if any.  

 In addition to the main function that serves as the analysis entry point of JPF, the main scheduler 

should also provide methods to manage the activity stack, running service list, and the broadcast receiver 

list. This is because during the execution of an application, many events can be generated and need to be 

handled on the fly. For example, the call to the startActivity() API will stop the current foreground 

activity, and start a new activity. As mentioned earlier, such events will be monitored using JPF’s listener 

mechanism. When a listener is notified that startActivity() is called, it can call the corresponding method 

provided by the main scheduler to  manage the activities. The details will be introduced in the following 

section. 

4. Android API Modeling and Abstraction 
As mentioned earlier, some Android APIs leverage Android system level functionalities or rely on 

native libraries. This causes big trouble to JPF. First, typically the byte codes of these Android APIs are 

not available for analysis. Second, even if their byte codes are obtained (e.g., we built the Android 

framework to get the non-stub version of android.jar), JPF’s JVM will still fail to execute them because 

JPF has no idea about how to handle native calls. As such, we need to properly model these APIs. We 

note that completely and precisely modeling all these APIs and their side effects requires enormous 

engineering efforts. We in this section introduce our modeling of some critical Android APIs as examples 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 All possible user interactions are infinite, but the computational resources are finite. Thus one needs to limit the number of user 
interaction events that can be generated during an execution of an application under analysis. 

Add the main activity to activity stack
Start the main activity
While(stoppingCriterion not satisfied){
get the stack top activity act
if(act ready for interaction){

randomly pick one GUI event from all possible GUI events
call corresponding GUI event handler by querying the decision procedure

} else{
call act’s corresponding life cycle event handler by querying the decision procedure

}
}
Finish all active activities
Finish all running services 	  

Figure 5. The pseudo code of our scheduler’s main function	  



10 
	  

(the collection of APIs we have carefully modeled can be found in Appendix B). Readers can decide 

which APIs to model based on their analysis goals (i.e., choose to ignore the side effects of some APIs if 

they are not relevant to the property that is to be verified).   

4.1 Activity and Service Management 
Android applications (i.e., typically the activity components) can start a new activity by calling 

startActivity() or startActivityForResult() APIs. An active activity act can be finished in two ways: (1) the 

activity itself calls the finish() API, (2) the activity that starts act calls the finishActivity() API with the 

request code that was used to start act. In this subsection, we introduce the modeling of startActivity() 

here as an example. 

The major effect of the startActivity() APIs is to stop the activity at foreground, and launch a new 

activity and put it in foreground. So in order to model such effects, we need to properly guide JPF to 

conduct the following tasks: 

• API calls interception. We need to closely monitor an application’s execution, and intercept each 

call to the startActivity() API.  

• Side effects abstraction. As discussed earlier, startActivity() leverages system level functionality 

(e.g., thread manipulation), and relies on native code (e.g., native activity manager). As such, we 

need to ignore its real implementation, and abstract its side effects (i.e., we can define an empty 

native peer method).  

• Activity management. After intercepting the call to startActivity() API, we need to switch from 

the current foreground activity to the new activity (i.e., modeling the critical side effects).  

The first two tasks can be done using the listener and native peer mechanisms of JPF, respectively. 

The third task can be done by calling the activity management methods of our main scheduler. Figure 6 

illustrates the modeling process. When the listener is notified that startActivity() is called, it will process 

JPFJVM

Call	  stack

startActivity()

Listener

VM	  events

//start the map activity when button clicked
Public void onClick(View v){
... ...
Intent intent = new Intent(MapActivity.class);
startActivity(intent);

}

//if startActivity() called
Step 1: process the intent and find the target activity
Step 2: manipulate JVM’s call stack to manage activities

	  
Figure 6. Modeling the startActivity() API 

	  



11 
	  

the intent argument and find out the target activity. After that, the listener should “call” the activity 

management method provided by our main scheduler to perform the activity switching task.  

As we have discussed in the background section, JPF and its listeners runs in the host VM, and the 

application under analysis runs in JPF’s JVM. So if we wish to manage the activities tracked by our main 

scheduler (note that the main scheduler also runs in JPF’s JVM), we need to manipulate the runtime call 

stack of JPF’s JVM instead of calling the scheduler’s activity management methods directly in the listener. 

We give the example code snippet in Figure 7. It creates a frame for the activity management method of 

the main scheduler, push it onto the call stack of JPF’s JVM, and then starts the execution. 

Similar to activities, other components can start a service by calling the startService() or bindService() 

APIs. A running service can also be stopped in two ways. First, a service can stop itself by calling the 

stopSelf() API. Second, other component can stop a running service by calling the stopService() API. Our 

main scheduler provides corresponding methods to manage the life cycle of service components. The 

modeling of these APIs are similar to the modeling of startActivity(). We do not make further 

elaborations here. 

4.2 Broadcast Receiver Management 
In Android applications, broadcast receivers can be statically registered in application configuration 

files or dynamically registered in the activity or service components at runtime by calling 

registerReceiver() API. A dynamically registered receiver can be unregistered by calling 

unRegisterReceiver(). Each broadcast receiver is associated with a message filter and permission (both 

can be optional). Other components can broadcast a message at any time by calling the sendBroadcast() 

API. Our main scheduler maintains a list of registered receivers (static receivers are considered as being 

always registered). Figure 8 illustrates how such management task is done, and how the concerned APIs 

are modeled using JPF’s listener mechanism. As shown in the figure, the list of statically registered 

broadcast receivers is obtained by analyzing an application’s configuration files. The dynamically 

registered broadcast receivers are managed by monitoring their registration and unregistration events. 

When a dynamic broadcast receiver is registered (i.e., the registerReceiver() API is called), our 

//code to manipulate the call stack of JPF’s JVM
MethodInfo actSwitch = mainScheduler.getMethod(“activitySwitch(Ljava/lang/Object;)V", false);
if(actSwitch != null){
//create the call stub
MethodInfo stub = actSwitch.createDirectCallStub("[Activity Switch]");
DirectCallStackFrame frame = new DirectCallStackFrame(stub);
//push the reference of the activitySwitch() method’s argument onto the call stack frame 
frame.pushRef(argRef);
vm.getLastThreadInfo().pushFrame(frame);
vm.getLastThreadInfo().executeInstruction();

} 	  
Figure 7. Code snippet to manipulate the call stack of JPF's JVM in listeners	  



12 
	  

management method will add this receiver to the dynamic receiver list (recall that the method is called by 

manipulating the call stack of JPF’s JVM). Similarly, when a dynamic broadcast receiver is unregistered 

(i.e., the unregisterReceiver() API is called), it will be removed from the dynamic receiver list. By 

maintaining both the static and dynamic broadcast receivers, one can then properly pick up the 

appropriate receiver when a message is broadcasted (i.e., the sendBroadcast() API is called) by checking 

the message’s action and permission strings.   

4.3 GUI Event Listener Management 
Graphical user interfaces play a central role in Android applications. However, their construction and 

manipulation highly rely on native code. This makes analyzing Android applications using JPF very 

difficult. For example, in real executions of an Android application, when an activity is launched, the 

main thread (or UI thread) of the application process would construct its GUI by calling native graphical 

libraries (the GUI layout is learnt from the application configuration files). When the activity needs to 

register an event listener with a GUI element, it would first get the reference of the GUI element by 

calling the findViewById() API, and then perform registration as shown in the following example code.  

We note that modeling the native graphical library is an unrealistic task. As a result, when the 

application is executed in JPF’s JVM, the findViewById() API will not correctly return a GUI element 

reference. Therefore, we need to properly model the findViewById() API. Figure 9  illustrates how we 

model the findViewById() API. It consists of two parts: a static part and a dynamic part. In the static part, 

we pre-analyze an application’s configuration files to learn the GUI layout of each activity component, 

containing the key information such as each GUI element’s type and id. Then, when the application is 

executed by JPF, we monitor the call to the findViewById() API. When it is called, we would retrieve 

JPFJVM

Call	  stack

configuration	  XML	  files

.	  .	  .

Static	  broadcast	  receivers

.	  .	  .

Dynamic	  broadcast	  receivers

registerReceiver()

unregisterReceiver()

sendBroadcast()

Receiver	  management	  
method

Add Remove Select

Select

	  
Figure 8. Broadcast receiver managment and API modeling	  

Button btn = (Button) findViewById(R.id.btn); 

btn.setOnClickListener(myListener); 



13 
	  

from JPF’s JVM the reference to the current activity, and find out the activity’s layout. By doing so, we 

would obtain all necessary information about the corresponding GUI element. Finally, we can create an 

object in JPF’s JVM for the GUI element, and make findViewById() return the object’s reference. 

After properly modeling findViewById() API, building the associations between GUI event listeners 

and activity components becomes straight forward. Similar to the management of dynamic broadcast 

receivers, we can design a listener to monitor the registration operation of a GUI event listener, and 

associate the event listener with the foreground activity (recall that we maintain a stack of activities). 

Each listener corresponds to a specific GUI event. Then we would be able to know what user interaction 

events can be generated when a foreground activity is ready for interaction, and leverage JPF’s model 

checking functionality to systematically explore all possibilities.  

5. Preliminaries Experimental Results 
We implemented our extension on top of JPF for Android 2.3.3, which is the most popularly installed 

Android platform. To evaluate its usefulness, we conducted controlled experiments, which are designed to 

answer the following research question? 

Research Question: Can our extension enable JPF to verify real-world Android applications and find 

real defects? What is the analysis overhead? 

5.1 Experimental Setup and Design 
We selected five open-source Android applications as our experimental subjects. They received 

popular downloads from Google Play Store [13] or Google Code [12]. Table 2 lists their basic 

Application	  configuration	  files

Activity	  1

……

Activity	  n

GUI	  
Layout

GUI	  Elements
• Type
• Id
• Text	  …

GUI	  
Layout

GUI	  Elements
• Type
• Id
• Text	  …

Association

Association

JPFJVM

Call	  stack

findViewById()

Listener

VM	  events

//findViewById() modeling
Step 1: locate the GUI layout of the current activity
Step 2: find the GUI element’s information 
Step 3: create a corresponding object in JPF’s JVM

Static	  part

Dynamic	  part

	  
Figure 9. GUI layout analysis and the modeling of findViewById() API 

	  



14 
	  

information. For example, we choose the 322nd revision of Zmanim as one subject. It contains 4,893 lines 

of code, and has received more than 10,000 downloads in Google Play Store. All these applications were 

compiled for Android 2.3.3.  

To answer our research question, we implemented a resource leak detection algorithm [7] on top of 

our extension. Specifically, this algorithm helps detect whether sensor listeners are properly unregistered7 

before an Android application exits. We applied this detection tool to analyze our experimental subjects. 

As discussed earlier, all possible user interactions are infinite. As such, we controlled our tool to generate 

at most six user interaction events during each application execution. Our experiments were conducted on 

a dual-core machine with Intel Core i5 CPU and 8GB RAM, running Windows 7 Professional SP1. We 

report our preliminary results in the following section. 

5.2 Experimental Results 
Table 3 presents our tool’s analysis overhead for the five applications. Even for two largest subjects 

Omnidroid and DroidAR (over 18K LOC), our tool finished the verification within four minutes and cost 

less than 500 MB memory. Such overhead is well supported by modern PCs and compares favorably with 

state-of-the-art testing or debugging techniques [20].  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7 Many Android applications use sensors to provide context-aware services. To use a sensor, they need to register a listener with 
the Android system. When the sensors are not needed, the application needs to unregister the corresponding listener. Otherwise, it 
will lead to wasted sensing operations and battery energy.  

Table 2. Experimental subjects 

Application
Basic Information

Revision No. Lines of code Downloads Availability

Osmdroid 750 18,091 10,000—50,000 Google Play Store

Zmanim 322 4,893 10,000—50,000 Google Play Store

Omnidroid 863 12,427 1000—5000 Google Play Store

DroidAR 204 18,106 1000—5000 Google Code

Recycle-locator 68 3,241 1000—5000 Google Play Store 	  

Table 3. Analysis overhead 

Application
Analysis Overhead

Analysis Time (seconds) Memory Consumption (MB)

Osmdroid 94 442

Zmanim 76 174

Omnidroid 163 293

DroidAR 205 188

Recycle-locator 27 115
	  



15 
	  

Encouragingly, we found two real defects in DroidAR and Recycle Locator. DroidAR is a framework 

for augmented reality on Android. It leverages sensory data to digitalize the real world and make users’ 

environment interactive. Recycle-locator is a location-aware application for helping users quickly locate 

services such as vending machines in university campuses. Our tool detected that their sensor listeners are 

never unregistered after usage [8][19]. Android system would keep an application process (even an empty 

process) alive as long as possible until its memory runs low [5]. As a result, such forgotten sensor 

unregistration could lead to wasted sensing operations, which would consume much battery energy. 

5.3 Discussion 
JPF is one of the most mature and robust frameworks for verifying Java byte-code programs. Since 

Android programs are a special type of Java programs. Extending JPF for verifying Android applications 

is possible. However, the extension is very difficult and requires huge engineering efforts as we have 

discussed in this report. Although we have successfully enabled JPF to verify quite a few Android 

applications, there are still many problems remaining unsolved. We discuss two major problems here. 

First, we did not properly model the concurrent features of Android applications8. We observe that 

concurrency is popularly used in real-world Android applications. If the concurrent features are relevant 

to the verification target, ignoring concurrency will lead to imprecise and unsound analysis results. 

Second, we did not properly model the dynamic GUI features of Android applications. Our extension 

assumes that the GUI layout of activities components would remain unchanged during an application’s 

execution. This is true for a large proportion of Android applications. However, Android system allows 

an activity to change its GUI layout at runtime. To support precise and sound analysis of general Android 

applications, modeling such dynamic GUI features are unavoidable.  

6. Conclusion 
In this report, we have discussed how to extend Java PathFinder to verify Android applications. We 

mainly addressed two challenges. First, we derived an event handler scheduling model from Android 

specifications. This model can guide JPF to realistically call event handlers when analyzing Android 

applications. Second, we discussed how to properly model critical Android APIs that leverage Android 

system functionalities or rely on native libraries such that the side effects of these APIs would not be 

ignored by JPF. We implemented our extension for Android 2.3.3, and built a prototype tool on top of our 

extension to detect forgotten sensor listener unregistration defects in Android applications. Our 

preliminary experimental results show that the extension can help verify real-world Android applications 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
8 When there is no explicit use of concurrent programming constructs, all components (including background services) of an 
Android application would run in the UI thread of the application process. 



16 
	  

and locate real defects. Currently, our extension cannot apply to general Android applications because 

some features (e.g., concurrency and dynamic GUI) are not properly modeled. In future, we are going to 

address these problems and enable JPF to verify more and more Android applications. This would benefit 

millions of Android developers as JPF can help them automatically detect defects in their applications. 

 

References 
[1] “Android.” URL: http://www.android.com/ 

[2] Angry Birds on Google Play Store. URL: https://play.google.com/store/apps/details?id=com.rovio. 
Angrybirds 

[3] Android issue 9392. URL: http://code.google.com/p/android/issues/detail?can=1&q=9392 

[4] Any.Do on Google Play Store. URL: https://play.google.com/store/apps/details?id=com.anydo 

[5] “Android Process Lifecycle.” URL: http://developer.android.com/reference/android/app/Activity.html# 
ProcessLifecycle. 

[6] Android Service Component. URL: http://developer.android.com/reference/android/app/ Service.html 

[7] M. Arnold, M. Vechev, and E. Yahav, “QVM: an efficient runtime for detecting defects in deployed systems,” 
ACM Trans. Sotware Engineering and Methodology, vol. 21, pp. 2:1-2:35, 2011. 

[8] “DroidAR issue 27.” URL: http://code.google.com/p/droidar/issues/detail?id= 27 

[9] Facebook on Google Play Store. URL: https://play.google.com/store/apps/details?id=com.facebook. Katana 

[10] Financial Calculator on Google Play Store. URL: https://play.google.com/store/apps/details?id=com.financial. 
calculator 

[11] FindBugs. URL: http://findbugs.sourceforge.net/  

[12] “Google Code.” URL: http://code.google.com/ 

[13] “Google Play Store.” URL: https://play.google.com/store 

[14] “Google Play Store Application Download Statistics.” URL: http://en.wikipedia.org/wiki/ Google_Play 

[15] Java PathFinder. URL: http://babelfish.arc.nasa.gov/trac/jpf 

[16] “JPF and Google Summer of Code.” URL: http://babelfish.arc.nasa.gov/trac/jpf/wiki/events/ soc2012 

[17] K-9 Mail on Google Play Store. URL: https://play.google.com/store/apps/details?id=com.fsck.k9 

[18] P. Ammann and J. Offutt, Introduction to Software Testing. Cambridge University Press, 2008. 

[19] “Recycle-locator issue 33.” URL: http://code.google.com/p/recycle-locator/issues/detail?id=33 

[20] “Robotium test framework”. URL: http://code.google.com/p/robotium/ 

[21] The JavaTM Virtual Machine Specification (Java SE 7 Edition). URL: http://docs.oracle.com/javase/specs/ 
jvms/se7/html/index.html  

[22] W. Visser, K. Havelund, G. Brat, and S. Park, "Model checking programs," Proc. Int’l Conf. Automated Soft. 
Engr., 2000, pp. 3-11. 

 



17 
	  

Appendix A. EHS Model Temporal Rule Collection 
Our EHS model currently contains 23 temporal rules, specifying the appropriate calling time of a 

critical set of event handlers in Android applications. We present and explain them below. 

! Rule 1: When should an activity component’s onCreate() life cycle event handler be called? 

𝑇𝑟𝑢𝑒 ,    𝐴𝐶𝑇_𝑆𝑇𝐴𝑅𝑇_𝐸𝑉𝐸𝑁𝑇⋀¬𝐴𝐶𝑇_𝑅𝑈𝑁𝑁𝐼𝑁𝐺 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() 

Explanation: An activity’s onCreate() handler should be called next if the activity is not running, and 

it is requested to be launched. 

 
! Rule 2 and 3: When should an activity component’s onStart() life cycle event handler be called? 

Case 1: 𝑿!𝟏  𝑎𝑐𝑡. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() ,    ¬𝐴𝐶𝑇_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡() 

Case 2: 𝑿!𝟏  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑡𝑎𝑟𝑡() ,    𝑇𝑟𝑢𝑒 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡() 

Explanation: An activity’s onStart() handler should be called next in two cases. In the first case, it 

should be called after the activity’s onCreate() handler completes as long as the activity is not force to 

finish. In the second case, it should be called after the activity’s onRestart() handler completes. 

 
! Rule 4 and 5: When should an activity component’s onResume() life cycle event handler be called? 

Case 1:   𝑿!𝟏  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡() ,    ¬𝐴𝐶𝑇_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇   ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒() 

Case 2: 𝑿!𝟏  𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒() ,    𝐴𝐶𝑇_𝑅𝐸𝑇𝑈𝑅𝑁_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒() 

Explanation: An activity’s onResume() handler should be called next in two cases. In this first case, 

the onResume() handler should be called if the previously called event handler was this activity’s 

onStart() handler, and this activity is not forced to finish. In the second case, the onResume() handler 

should be called if the previously called event handler was this activity’s onPause() handler (i.e., users 

try to pause this activity by switching from it to other activities), and users return to this activity. 

 
! Rule 6: When should an activity component’s onPause() life cycle event handler be called? 

¬𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒()  𝑺𝑺  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒() ,    𝐴𝐶T_𝑆𝑊𝐼𝑇𝐶𝐻_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒() 

Explanation: An activity’s onPause() handler should be called next if it was previously interacting 

with users, and users now switch to other activities or the home screen. 

 
! Rule 7: When should an activity component’s onStop() life cycle event handler be called? 

𝑿!𝟏  𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒() ,    𝐴𝐶𝑇_𝐼𝑁𝑉𝐼𝑆𝐼𝐵𝐿𝐸   ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑜𝑝() 

Explanation: An activity’s onStop() handler should be called next if its onPause() handler was 

previously called, and this activity becomes invisible (i.e., users did not return to this activity after 

switching from it). 

 
! Rule 8: When should an activity component’s onDestroy() life cycle event handler be called? 



18 
	  

(¬𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑡𝑎𝑟𝑡()  𝑺𝑺  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑜𝑝()) ∧ (¬𝑎𝑐𝑡. 𝑜𝑛𝐷𝑒𝑠𝑡𝑟𝑜𝑦()  𝑺𝑺  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑜𝑝()) ,    𝐴𝐶T_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇  

⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝐷𝑒𝑠𝑡𝑟𝑜𝑦() 

Explanation: An activity’s onDestroy() handler should be called next if the activity was stopped (i.e., 

no life cycle event handler has been called since its onStop() handler was called), and this activity is 

now being requested to finish. 

 
! Rule 9: When should an activity component’s onRestart() life cycle event handler be called? 

(¬𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑡𝑎𝑟𝑡()  𝑺𝑺  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑜𝑝()) ∧ (¬𝑎𝑐𝑡. 𝑜𝑛𝐷𝑒𝑠𝑡𝑟𝑜𝑦()  𝑺𝑺  𝑎𝑐𝑡. 𝑜𝑛𝑆𝑡𝑜𝑝()) ,    𝐴𝐶T_𝑅𝐸𝑇𝑈𝑅𝑁_𝐸𝑉𝐸𝑁𝑇

⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑡𝑎𝑟𝑡() 

Explanation: An activity’s onRestart() handler should be called next if the activity was stopped (i.e., 

no life cycle event handler has been called since its onStop() handler was called), and users now 

navigate back to this activity. 

 
! Rule 10 and 11: When should a service component’s onCreate() life cycle event handler be called? 

Case 1: 𝑇𝑟𝑢𝑒 ,    𝑆𝐸𝑅_𝑆𝑇𝐴𝑅𝑇_𝐸𝑉𝐸𝑁𝑇 ∧ ¬𝑆𝐸𝑅_𝑅𝑈𝑁𝑁𝐼𝑁𝐺   ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() 

Case 2: 𝑇𝑟𝑢𝑒 ,    𝑆𝐸𝑅_𝐵𝐼𝑁𝐷_𝐸𝑉𝐸𝑁𝑇 ∧ ¬𝑆𝐸𝑅_𝑅𝑈𝑁𝑁𝐼𝑁𝐺   ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() 

Explanation: A service’s onCreate() handler should be called next in two cases. In the first case, the 

onCreate() handler should be called if the service is requested to start, and this service is not running. 

In the second case the onCreate() handler should be called if the service is requested to start by 

binding, and this service is not running. 

 
! Rule 12 and 13: When should a service component’s onStartCommand() life cycle event handler be 

called? 

Case 1: 𝑿!𝟏  𝑠𝑒𝑟. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() ,    ¬𝑆𝐸𝑅_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇   ∧   𝑆𝐸𝑅_𝑆𝑇𝐴𝑅𝑇𝐸𝐷 ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑚𝑚𝑎𝑛𝑑() 

Case 2: 𝑇𝑟𝑢𝑒 ,    𝑆𝐸𝑅_𝑆𝑇𝐴𝑅𝑇_𝐸𝑉𝐸𝑁𝑇 ∧ 𝑆𝐸𝑅_𝑅𝑈𝑁𝑁𝐼𝑁𝐺 ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝑆𝑡𝑎𝑟𝑡𝐶𝑜𝑚𝑚𝑎𝑛𝑑() 

Explanation: A service’s onStartCommand() should be called next in two cases. In the first case, the 

onStartCommand() handler should be called if (1) the service’s onCreate() handler was called 

previously, (2) the service is launched by normal starting, and (3) the service is not forced to finish. In 

the second case, the onStartCommand() handler should be called if the service is now requested to 

start, but it is already running.  

 
! Rule 14 and 15: When should a service component’s onBind() life cycle event handler be called? 

Case 1: 𝑿!𝟏  𝑠𝑒𝑟. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒() ,    ¬𝑆𝐸𝑅_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇 ∧   𝑆𝐸𝑅_𝐵𝑂𝑈𝑁𝐷 ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝐵𝑖𝑛𝑑() 

Case 2: 𝑇𝑟𝑢𝑒 ,    𝑆𝐸𝑅_𝐵𝐼𝑁𝐷𝐼𝑁𝐺_𝐸𝑉𝐸𝑁𝑇 ∧ 𝑆𝐸𝑅_𝑅𝑈𝑁𝑁𝐼𝑁𝐺   ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝐵𝑖𝑛𝑑() 

Explanation: A service’s onBind() handler should be called next in two cases. In the first case, the 

onBind() handler should be called if (1) the service’s onCreate() handler was previously called, (2) the 



19 
	  

service is launched by binding, and (3) the service is not forced to finish. In the second case, the 

onBind() handler should be called if the service is already running, and another component now 

requests to bind to it. 

 
! Rule 16: When should a service component’s onUnbind() life cycle event handler be called? 

𝑇𝑟𝑢𝑒 ,    𝑆𝐸𝑅_𝑈𝑁𝐵𝐼𝑁𝐷_𝐸𝑉𝐸𝑁𝑇   ∧   𝑆𝐸𝑅_𝑅𝑈𝑁𝑁𝐼𝑁𝐺 ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝑈𝑛𝑏𝑖𝑛𝑑() 

Explanation: A service’s onUnbind() handler should be called next if the service is running, and 

another component now requests to unbind to it. 

 
! Rule 17 and 18: When should a service component’s onDestroy() life cycle event handler be called? 

Case 1: 𝑇𝑟𝑢𝑒 ,    𝑆𝐸𝑅_𝐹𝐼𝑁𝐼𝑆𝐻_𝐸𝑉𝐸𝑁𝑇   ∧   𝑆𝐸𝑅_𝑆𝑇𝐴𝑅𝑇𝐸𝐷 ∧   𝑆𝐸𝑅_𝑅𝑈𝑁𝑁𝐼𝑁𝐺 ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝐷𝑒𝑠𝑡𝑟𝑜𝑦() 

Case 2: 𝑿!𝟏  𝑠𝑒𝑟. 𝑜𝑛𝑈𝑛𝑏𝑖𝑛𝑑() ,    𝑆𝐸𝑅_𝐵𝑂𝑈𝑁𝐷 ∧ 𝑆𝐸𝑅_𝑁𝑂_𝐵𝑂𝑈𝑁𝐷_𝐶𝑂𝑁𝑁 ⟹ 𝑿  𝑠𝑒𝑟. 𝑜𝑛𝐷𝑒𝑠𝑡𝑟𝑜𝑦() 

Explanation: A service’s onDestroy() handler should be called next in two cases. In the first case, a 

running service’s onDestroy() handler should be called if the service is launched by normal starting 

mechanism, and the service is now requested to finish. In the second case, the onDestroy() handler of a 

service launched by the binding mechanism should be called if the service has no bound clients after 

the call to its onUnbind() handler.  

 
! Rule 19: When should a dynamic message event handler rcv.onReceive() be called? 

¬𝑟𝑐𝑣. 𝑢𝑛𝑟𝑒𝑔()    𝑺𝒔    𝑟𝑐𝑣. 𝑟𝑒𝑔() ,    𝑀𝑆𝐺_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑟𝑐𝑣. 𝑜𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒() 

Explanation: A dynamic message event handler rcv.onReceive() should be called next if the receiver 

rcv is properly registered, and rcv’s interested message event occurs at this moment. 

 
! Rule 20: When should a static message event handler Receiver.onReceive() be called? 

𝑇𝑟𝑢𝑒 , [𝑀𝑆𝐺_𝐸𝑉𝐸𝑁𝑇] ⟹ 𝑿  𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟. 𝑜𝑛𝑅𝑒𝑐𝑒𝑖𝑣𝑒() 

Explanation: A static message event handler should be called next if its interested message event 

occurs at this moment. 

  
! Rule 21 to 27: When should a GUI event handler be called? 

(¬𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒()  𝑺𝒔  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒()) ∧ (¬𝑤𝑖𝑑𝑔𝑒𝑡. 𝑟𝑒𝑔(𝑛𝑢𝑙𝑙)  𝑺𝒔  𝑤𝑖𝑑𝑔𝑒𝑡. 𝑟𝑒𝑔(𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟)) , 𝐺𝑈𝐼_𝐸𝑉𝐸𝑁𝑇

⟹ 𝑿  𝑙𝑖𝑠𝑡𝑒𝑛𝑒𝑟. 𝑜𝑛𝐻𝑎𝑛𝑑𝑙𝑒𝐺𝑈𝐼𝐸𝑣𝑒𝑛𝑡() 

Explanation: A GUI event handler should be called if (1) the GUI event occurs (including click 

events, touch events, long click events, menu click events, drag events, hover events, key events), (2) 

the GUI event listener is properly registered, and (3) the GUI widget’s enclosing activity is at 

foreground.  

 



20 
	  

! Rule 28: When should an activity component’s onCreateOptionsMenu() handler be called? 

(¬𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒()  𝑺𝒔  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒()) , 𝑀𝐸𝑁𝑈_𝐶𝐿𝐼𝐶𝐾_𝐸𝑉𝐸𝑁𝑇 ⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝐶𝑟𝑒𝑎𝑡𝑒𝑂𝑝𝑡𝑖𝑜𝑛𝑠𝑀𝑒𝑛𝑢() 

Explanation: An activity’s onCreateOptionMenu() handler should be called next if the activity is at 

foreground, and the menu button is clicked. 

 
! Rule 29: When should an activity component’s onOptionsItemSelected() handler be called? 

(¬𝑎𝑐𝑡. 𝑜𝑛𝑃𝑎𝑢𝑠𝑒()  𝑺𝒔  𝑎𝑐𝑡. 𝑜𝑛𝑅𝑒𝑠𝑢𝑚𝑒()) , 𝑀𝐸𝑁𝑈_𝐼𝑇𝐸𝑀_𝐶𝐿𝐼𝐶𝐾_𝐸𝑉𝐸𝑁𝑇

⟹ 𝑿  𝑎𝑐𝑡. 𝑜𝑛𝑂𝑝𝑡𝑖𝑜𝑛𝑠𝐼𝑡𝑒𝑚𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑() 

Explanation: An activity’s onOptionsItemSelected() handler should be called next if the activity is at 

foreground, and a menu item is clicked. 

Appendix B. The Collection of Modeled Android APIs 
We need to carefully model Android APIs that leverage Android system functionalities or rely on 

native libraries such that JPF can properly execute an Android application in its JVM and perform 

verification tasks. Depending on the verification goals, one can choose to model a set of Android APIs 

while ignore the side effects of other APIs. In this appendix, we list a critical set of Android APIs we 

have carefully modeled. The modeling took us huge engineering efforts and the list is still expanding. 

1. Activity related APIs 

− public	  void	  startActivity(Intent	  intent)	  

− public	  void	  startActivityForResult(Intent	  intent,	  int	  requestCode)	  

− public	  void	  finish()	  

− public	  void	  finishActivity(int	  requestCode)	  

− public	  final	  void	  setResult(int	  resultCode)	  

− public	  void	  setContentView(int	  layoutResID)	  

− public	  void	  findViewById(int	  id)	  

− public	  Object	  getSystemService(String	  name) 

	  

2. Service related APIs 

− public	  ComponentName	  startService(Intent	  intent)	  

− public	  boolean	  bindService(Intent	  intent,	  ServiceConnection	  conn,	  int	  flags)	  

− public	  abstract	  IBinder	  onBind(Intent	  intent)	  

− public	  final	  void	  stopSelf()	  

− public	  final	  void	  stopSelf(int	  startId)	  

− public	  final	  void	  stopSelfResult(int	  startId)	  



21 
	  

− public	  boolean	  stopService(Intent	  name)	  

− public	  void	  unbindService(ServiceConnection	  conn)	  

3. Broadcast receiver related APIs 

− public	  Intent	  registerReceiver(BroadcastReceiver	  rcv,	  IntentFilter	  filter) 

− public	   Intent	   registerReceiver(BroadcastReceiver	   rcv,	   IntentFilter	   filter,	  

String	  permission,	  Handler	  scheduler) 

− public	  void	  unRegisterReceiver(BroadcastReceiver	  rcv) 

− public	  void	  sendBroadcast(Intent	  msg) 

− public	  void	  sendBroadcast(Intent	  msg,	  String	  permission) 

− public	  void	  sendOrderedBroadcast(Intent	  msg,	  String	  permission) 

− public	  void	  sendOrderedBroadcast(Intent	  intent,	  String	  receiverPermission,	  

BroadcastReceiver	  resultReceiver,	  Handler	  scheduler,	  int	  initial	  code,	  

String	  initialData,	  Bundle	  initialExtras)	  

− public	  void	  sendStickyBroadcast(Intent	  intent)	  

− public	  void	  sendStickyBroadcast(Intent	  intent,	  String	  receiverPermission,	  

BroadcastReceiver	  resultReceiver,	  Handler	  scheduler,	  int	  initial	  code,	  

String	  initialData,	  Bundle	  initialExtras)	  

 

4. GUI related APIs 

− public	  void	  setOnClickListener(View.onClickListener	  listener) 

− public	  void	  setOnLongClickListener(View.onLongClickListener	  listener) 

− public	  void	  setOnTouchListener(View.onTouchListener	  listener)  

− public	  void	  setOnCreateContextMenuListener(View.OnCreateContextMenuListener	  

listener)	  

− public	  void	  setOnDragListener(View.OnDragListener	  listener)	  

− public	  void	  setOnHoverListenert(View.OnHoverListener	  listener)	  

− public	  void	  setOnTouchListener(View.OnTouchListener	  listener)	  

− public	  void	  setOnKeyListener(View.OnKeyListener	  listener)	  

	  

5. Location sensing related APIs 

− public	  void	  requestLocationUpdate(String	  provider,	  long	  minTime,	  float	  

minDistance,	  LocationListener	  listener)	  

− public	  void	  removeUpdates(LocationListener	  listener)	  



22 
	  

− public	  boolean	  enableMyLocation()	  (Google	  maps	  API	  in	  MyLocationOverlay	  

class)	  

− public	   void	   disableMyLocation()	   (Google	   maps	   API	   in	   MyLocationOverlay	  

class)	  

− public	  List<String>	  getProviders(boolean	  enabledOnly)	  

− public	  List<String>	  getProviders(Criteria	  criteria,	  boolean	  enabledOnly)	  

− public	  LocationProvider	  getProvider(String	  name)	  

− public	  List<String>	  getAllProviders()	  

− public	  String	  getBestProvider(Criteria	  criteria,	  boolean	  enabledOnly)	  

− public	  boolean	  isProviderEnabled(String	  providerName)	  

− public	  Location	  getLastKnownLocation(String	  provider) 

 

6. Wake lock related APIs 

− public	  WakeLock	  newWakeLock(int	  levalAndFlags,	  String	  tag)	  

− public	  void	  acquire()	  

− public	  void	  release()	  

− public	  void	  setKeepScreenOn(boolean	  keepScreenOn) 

 

7. Asynchronous task and timer task related APIs 

− public	  final	  AsyncTask<Params,	  Progress,	  Result>	  execute	  (Params...	  params)	  

− public	  void	  schedule(TimerTask	  task,	  long	  period)	  

− public	  void	  schedule(TimerTask	  task,	  long	  delay,	  long	  period)	  

− public	  void	  schedule(TimerTask	  task,	  Date	  when)	  

− public	  void	  schedule(TimerTask	  task,	  long	  delay)	  

 


